GM-GAN: Geometric Generative Models based on Morphological Equivariant PDEs and GANs - CRISTAL-3D-SAM
Communication Dans Un Congrès Année : 2024

GM-GAN: Geometric Generative Models based on Morphological Equivariant PDEs and GANs

Résumé

This work deals with image generation, two main problems are addressed: (i ) improvements of specific feature extraction while accounting at multiscale levels intrinsic geometric features, and (ii ) equivariance of the network for reducing the complexity and providing a geometric interpretability. We propose a geometric generative model based on an equivariant partial differential equation (PDE) for group convolution neural networks (G-CNNs), so called PDE-G-CNNs, built on morphology operators and generative adversarial networks (GANs). The proposed geometric morphological GAN model, termed as GM-GAN, is obtained thanks to morphological equivariant convolutions in PDE-G-CNNs. GM-GAN is evaluated qualitatively and quantitatively using FID on MNIST and RotoMNIST, preliminary results show noticeable improvements compared classical GAN.

Fichier principal
Vignette du fichier
GMGAN_ICPR.pdf (8.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04738761 , version 1 (15-10-2024)

Identifiants

  • HAL Id : hal-04738761 , version 1

Citer

Hadji S El, Thierno Fall, Alioune Mbengue, Mohamed Daoudi. GM-GAN: Geometric Generative Models based on Morphological Equivariant PDEs and GANs. International Conference on Pattern Recognition (ICPR), Dec 2024, Kolkata, India. ⟨hal-04738761⟩
11 Consultations
3 Téléchargements

Partager

More