Asymptotic study of subcritical graph classes - Equipe modélisation combinatoire du laboratoire d'informatique de l'École Polytechnique
Article Dans Une Revue SIAM Journal on Discrete Mathematics Année : 2011

Asymptotic study of subcritical graph classes

Michael Drmota
  • Fonction : Auteur
  • PersonId : 832499
Veronika Kraus
  • Fonction : Auteur
  • PersonId : 927237
Juanjo Rué
  • Fonction : Auteur
  • PersonId : 857195

Résumé

We present a unified general method for the asymptotic study of graphs from the so-called subcritical graph classes, which include the classes of cacti graphs, outerplanar graphs, and series-parallel graphs. This general method works both in the labelled and unlabelled framework. The main results concern the asymptotic enumeration and the limit laws of properties of random graphs chosen from subcritical classes. We show that the number $g_n/n!$ (resp. $g_n$) of labelled (resp. unlabelled) graphs on $n$ vertices from a subcritical graph class ${\cG}=\cup_n {\cG_n}$ satisfies asymptotically the universal behaviour $$ g_n = c n^{-5/2} \gamma^n\ (1+o(1)) $$ for computable constants $c,\gamma$, e.g. $\gamma\approx 9.38527$ for unlabelled series-parallel graphs, and that the number of vertices of degree $k$ ($k$ fixed) in a graph chosen uniformly at random from $\cG_n$, converges (after rescaling) to a normal law as $n\to\infty$.

Mots clés

Fichier principal
Vignette du fichier
Subcritical.pdf (419.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00714690 , version 1 (05-07-2012)

Identifiants

Citer

Michael Drmota, Eric Fusy, Mihyun Kang, Veronika Kraus, Juanjo Rué. Asymptotic study of subcritical graph classes. SIAM Journal on Discrete Mathematics, 2011, 25 (4), pp.1615-1651. ⟨10.1137/100790161⟩. ⟨hal-00714690⟩
418 Consultations
127 Téléchargements

Altmetric

Partager

More