On the diameter of random planar graphs - Equipe modélisation combinatoire du laboratoire d'informatique de l'École Polytechnique
Communication Dans Un Congrès Année : 2010

On the diameter of random planar graphs

Résumé

We show that the diameter D(G_n) of a random (unembedded) labelled connected planar graph with n vertices is asymptotically almost surely of order n^{1/4} , in the sense that there exists a constant c > 0 such that P (D(G_n ) ∈ (n^{1/4−e} , n^{1/4+e} )) ≥ 1 − exp(−nc(e) ) for e small enough and n large enough (n ≥ n0 (e)). We prove similar statements for rooted 2-connected and 3-connected embedded (maps) and unembedded planar graphs.
Fichier principal
Vignette du fichier
diameter.pdf (210.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00714713 , version 1 (05-07-2012)
hal-00714713 , version 2 (20-08-2015)

Identifiants

  • HAL Id : hal-00714713 , version 1

Citer

Guillaume Chapuy, Eric Fusy, Omer Gimenez, Marc Noy. On the diameter of random planar graphs. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), Jun 2010, Vienne, Austria. pp.65-78. ⟨hal-00714713v1⟩

Collections

LIX_EMC
570 Consultations
815 Téléchargements

Partager

More