Prodsimplicial neighborly polytopes - Equipe modélisation combinatoire du laboratoire d'informatique de l'École Polytechnique
Article Dans Une Revue Discrete and Computational Geometry Année : 2011

Prodsimplicial neighborly polytopes

Résumé

Simultaneously generalizing both neighborly and neighborly cubical polytopes, we introduce PSN polytopes: their $k$-skeleton is combinatorially equivalent to that of a product of $r$ simplices. We construct PSN polytopes by three different methods, the most versatile of which is an extension of Sanyal and Ziegler's "projecting deformed products" construction to products of arbitrary simple polytopes. For general $r$ and $k$, the lowest dimension we achieve is $2k + r + 1$. Using topological obstructions similar to those introduced by Sanyal to bound the number of vertices of Minkowski sums, we show that this dimension is minimal if we additionally require that the PSN polytope is obtained as a projection of a polytope that is combinatorially equivalent to the product of $r$ simplices, when the dimensions of these simplices are all large compared to $k$.
Fichier principal
Vignette du fichier
MatschkePfeiflePilaud_ProdsimplicialNeighborlyPolytopes_DCG.pdf (414.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00777936 , version 1 (18-01-2013)

Identifiants

Citer

Benjamin Matschke, Julian Pfeifle, Vincent Pilaud. Prodsimplicial neighborly polytopes. Discrete and Computational Geometry, 2011, 46 (1), pp.100-131. ⟨10.1007/s00454-010-9311-y⟩. ⟨hal-00777936⟩
236 Consultations
138 Téléchargements

Altmetric

Partager

More