2-stack pushall sortable permutations - Equipe modélisation combinatoire du laboratoire d'informatique de l'École Polytechnique
Pré-Publication, Document De Travail Année : 2013

2-stack pushall sortable permutations

Résumé

In the 60's, Knuth introduced stack-sorting and serial compositions of stacks. In particular, one significant question arise out of the work of Knuth: how to decide efficiently if a given permutation is sortable with 2 stacks in series? Whether this problem is polynomial or NP-complete is still unanswered yet. In this article we introduce 2-stack pushall permutations which form a subclass of 2-stack sortable permutations and show that these two classes are closely related. Moreover, we give an optimal O(n^2) algorithm to decide if a given permutation of size n is 2-stack pushall sortable and describe all its sortings. This result is a step to the solve the general $2$-stack sorting problem in polynomial time.
Fichier principal
Vignette du fichier
articlePush-all.pdf (442.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00801861 , version 1 (18-03-2013)

Identifiants

Citer

Adeline Pierrot, Dominique Rossin. 2-stack pushall sortable permutations. 2013. ⟨hal-00801861⟩
175 Consultations
561 Téléchargements

Altmetric

Partager

More