Quasi-isometric invariance of continuous group L p -cohomology, and first applications to vanishings - Centre de mathématiques Laurent Schwartz (CMLS)
Article Dans Une Revue Annales Henri Lebesgue Année : 2020

Quasi-isometric invariance of continuous group L p -cohomology, and first applications to vanishings

Résumé

We show that the continuous L p-cohomology of locally compact second countable groups is a quasi-isometric invariant. As an application, we prove partial results supporting a positive answer to a question asked by M. Gromov, suggesting a classical behaviour of continuous L p-cohomology of simple real Lie groups. In addition to quasi-isometric invariance, the ingredients are a spectral sequence argument and Pansu's vanishing results for real hyperbolic spaces. In the best adapted cases of simple Lie groups, we obtain nearly half of the relevant vanishings.
Fichier principal
Vignette du fichier
ell_pcont.pdf (451.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04369516 , version 1 (02-01-2024)

Identifiants

Citer

Marc Bourdon, Bertrand Rémy. Quasi-isometric invariance of continuous group L p -cohomology, and first applications to vanishings. Annales Henri Lebesgue, 2020, 3, pp.1291-1326. ⟨10.5802/ahl.61⟩. ⟨hal-04369516⟩
50 Consultations
32 Téléchargements

Altmetric

Partager

More