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Abstract

Shear testing holds a peculiar place in sheet metal characterization for multiple reasons. Indeed, as op-

posed to tension or bi-axial expansion, the principal strains of such a deformation change their direction,

non-linearly, as a test proceeds. It is, in general, also impossible for an experimental setup to reproduce

theoretical conditions. The kinematics assumptions are therefore not verified in absolute, but satisfied up

to a certain level that often remains subjective. Fortunately, field measurement methods provide compre-

hensive data that can be used for assessing and improving experimental processing. In this work, digital

image correlation is applied to different types of shear testing performed on a dual phase steel. Results are

used to construct quantitative estimators to assess the quality of measurement as well as to decrease the

number and weight of assumptions. A method is also proposed to separate the measured kinematics into the

expected theoretical ones and the unwanted experimental deviations. It is quantitatively shown that, for the

considered material and sample types, translational simple shear testing achieves kinematics that are closer

to theory than pseudo-simple shear testing. The other major finding of this work is a method to identify

shear strains independently of experimental biases.
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simple shear pseudo-shear
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Figure 1: Illustrative definitions of the different shear testing technologies. Gray areas represent the sample geometries while

arrows indicate the imposed kinematics.

1. Introduction

Sheet metals represent a capital basic resource in manufacturing industries. Their forming requires com-

plex processes involving a wide variety of mechanical phenomena. Among them: plasticity with potential

rate dependence, finite deformations, damage or fracture. Moreover, the production of sheet metals includes

several steps of rolling at different temperature levels which act on the poly-crystalline structure. This nec-5

essarily alters the geometry and orientations of grains hence exacerbates their macroscopic anisotropy.

Because of plastic anisotropy, the classical tensile test alone is no longer sufficient. The pursuit of a

thorough material characterization therefore demands to explore a wider range of plane stress directions

. For example, simple shear testing is used in the literature to calibrate the yield surfaces of anisotropic

materials as studied and applied by Vegter and van den Boogaard (2006); Zang et al. (2011); Abedini et al.10

(2017, 2018). Shear testing can also bring important experimental advantages such as large strains or reverse

loading possibilities. This type of testing can be achieved by several means that types are presented in figure

1. They are first distinguished in terms of loading path (translational or torsional) and then depending on

the application of boundary conditions. Simple shear refers to the case where the displacements of the

gauge zone boundaries are imposed to match the shear theoretical motion. Pseudo-shear designates the case15

where the displacements are not prescribed directly, but resulting shear forces are expected at the gauge

zone boundaries.

Translational simple shear (Miyauchi, 1977; An et al., 2009; Manach et al., 2014) is a straightforward

way to materialize a shear load onto sheet metals. It gives important possibilities such as reverse loading
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(Carbonnière et al., 2009) or anisotropy characterization (Rauch, 1998; Lou et al., 2020), that importance20

in metal forming have been acknowledged for several decades (Courbon and Duval, 1993). It nevertheless

demands a rigid setting with severe geometrical restriction on the samples in order to avoid buckling (Pham

et al., 2017) or critical heterogeneities (G’ Sell et al., 1983; Bouvier et al., 2006). Stresses tend to concentrate

at the grips locations which hinders fracture characterization. Translational pseudo-simple shear (refereed

to as pseudo-shear) (Mohr and Henn, 2004; Reyes et al., 2009; Shouler and Allwood, 2010; Roth and Mohr,25

2016; ASTM, 2019) decreases the stiffness of the setup, reduces kinematic gradients and opens to a more

reliable fracture characterization (Abedini et al., 2016; Zhang et al., 2019). It unfortunately looses some

advantages of simple shear such as the possibility of reverse loading. An important issue also subsists

in the stress concentration and necessary heterogeneities obtained at the edges of the sample. An elegant

way to suppress this problem is to consider a setup without edges: torsional simple shear (Marciniak and30

Kolodziejski, 1972; Yin et al., 2015). This is the only shear technology that can provide a uniform loading.

But the area that resists to the imposed torque revolves around all directions of the sample, which makes it

impossible to distinguish any anisotropic effect in sheet metals. To that end, torsional pseudo-shear (Brosius

et al., 2011; Yin et al., 2012, 2014) only acts on two parallel and opposed bridges that material orientation is

unique and controlled. With the reintroduction of edges, it is nevertheless subjected to difficulties similar to35

translational pseudo-shear. In addition, mixed strain paths can be explored using tension–shear combined

setups (Kumar et al., 2020; Wang et al., 2020) or multi-step characterization (Bouvier et al., 2006; Starman

et al., 2019). A number of other hybrid or alternative specimens have been introduced and adopted in the

litterature, such as the butterfly-type (Mohr and Henn, 2007) that was designed to allow different levels of

triaxiality. These have become necessary in the calibration of anisotropic hardening models (Barlat et al.,40

2020; Hérault et al., 2021) for the prediction of forming processes.

It is clear from the last paragraph that shear technologies all come with advantages and drawbacks.

For a given material, they should all lead to identical results which cannot always be achieved as shown

by Yin et al. (2014). Heterogeneities and edge effects have been characterized and quantified in several

studies (G’ Sell et al., 1983; Bouvier et al., 2006). As emphasized by Roth and Mohr (2018), the premature45

tensile fracture they provoke limits the validity of shear characterization. The corresponding rotation of the

material frame (Moreira and Nunes, 2013; Abedini et al., 2020) and the presence of normal stresses (Pereira

et al., 2019; Abedini et al., 2020) can also bring significant variations in post-processed results. According

to Mazière et al. (2017) in the case of plastic instabilities, the very tightening of grips may reflect on the
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measured behavior. The approximated stress states and their consistency with the chosen strains remain a50

non trivial matter discussed in several analyses (Zhou and Tamma, 2003; Destrade et al., 2012; Butcher and

Abedini, 2017; Thiel et al., 2019). For these reasons, the study of shear testing techniques is an ongoing field

of research on both the experimental and theoretical sides. To tackle some of these issues, the experimental

measurement of strains has been improved by several means. For instance, Thuillier and Manach (2009)

make use of a point tracking method combined with a principal strains formulation to identify a shear strain55

measure. Advances in field measurement techniques such as digital image correlation (DIC) also bring

strong advantages to the understanding of experimental kinematics. An important part of today’s results

(Yin et al., 2014; Manach et al., 2014) is owed to such techniques. At a given instant, a single gauge or

extensometer may only provide one component of a strain tensor averaged over a small area. In the mean

time, field measurement techniques allow to estimate every planar component of a strain measure over an60

entire area. Possible heterogeneities and unwanted (theoretically absent but experimentally unavoidable)

deformations can be revealed.

Hence the purpose of this work is to use kinematic field measurements to address several ongoing

questions regarding shear testing. With the full knowledge of in-plane kinematics, assumptions can be

weakened, definitions specified and errors quantified. After a recall on the theory of simple shear and the65

standard postprocessing of experiments, a new method is proposed to lift ambiguities in the definition of

the shear parameter. It relies on an explicit partition of the measured deformation gradient into a theoretical

contribution and an unwanted one. These quantities are then used to derive homogeneity and error estima-

tors, as well as consistent stresses definitions. These methods are finally applied to compare different shear

experimental setups with an advanced high strength steel.70

2. Material and methods

The experimental setups considered in this paper are illustrated in figure 2 while the geometries of

shear testing specimens are detailed in figure 3. The material is a high strength dual phase steel (DP600)

laminated in sheets of thickness 1.2 mm. Shear testing technologies are implemented on a tensile machine

with cell capacities 50 kN (samples s1,s2,p2) and 10 kN (samples p1). The specimens are loaded along75

their rolling direction. In order to obtain the strains components, images are acquired and postprocessed

with the Gom–Aramis system that uses a subset-based digital image correlation algorithm. The facet size

ranges from 10 to 15 pixels, which corresponds to a physical size of 0.1 mm to 0.2 mm. No regularization
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was used in the image processing. The forces measured by the different load cells are used to calculate the

stresses.80

Firstly, the simple shear setup (figure 2-s) is composed of two grips which apply a clamping force on

the specimen of 10 kN to 15 kN to avoid the sliding of the specimen. One of the grips is fixed and a vertical

displacement is applied on the other one. It is not possible to obtain fracture considering the stiffness of this

setup whereas it is possible with pseudo-shear geometries which are fixed with a system of pins. In fact the

bottom pin is fixed and a vertical displacement is applied on the top one (figure 2-p) but the area of interest85

in the center is not impacted directly by the boundary conditions.

There are four translational shear samples as shown in figure 3: two variants of simple shear labelled s1

and s2, and two variants of pseudo-shear labelled p1 and p2. The two simple shear specimens s1 and s2

have a rectangular shape but there are circular arcs machined at each extremity s2 that are intended to reduce

edge effects during the test. The shear direction is vertical along the length of the specimen and the width90

between the grips is 4 mm. The two others geometries have more complex shapes including two symmetric

regions of interest with a consequent reduction of the length compared to simple shear specimens.

3. Theory and calculation

3.1. Kinematics

3.1.1. Simple shear deformation95

This section summarizes analytical results from the definition of simple shear to the derivation of several

tensors of interest. The considered body occupies an initial configuration Ω0; its deformation is described

by a mapping y to its current configuration Ω. Simple shear hereafter refers to a deformation that can be

written in the form:

y : Ω0 ÝÑ Ω

X ÞÝÑ ypXq “ X1e1 ` pX2 ` γX1qe2 ` X3e3. (1)

Let b “ pe1, e2, e3q be the associated direct orthonormal cartesian basis that will be used throughout this

work. The simple shear deformation is illustrated in figure 4 for a rectangular body of initial plane dimen-

sions lˆ h, that right edge is vertically displaced of d “ hγ.

The shear parameter γ is the single variable that characterizes such a deformation. The consecutive
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(s) simple shear (p) pseudo shear

imposed kinematics
(constant grip velocity)

resulting sthenics

Figure 2: Experimental setups for simple shear (dedicated equipment) and pseudo-shear (tensile apparatus). In both cases the

boundary conditions are a constant grip velocity. In the case of pseudo-shear, the geometry ensures resulting shear forces in the

gauge zone. The present illustration is purely schematic: geometric details are provided in figure 3.
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Figure 3: Considered geometries for shear testing with units in mm. Label “s” refers to simple shear while “p” refers to pseudo-

shear. s1 and s2 are variants of the modified Miyaushi test, while p1 is inspired by Roth and Mohr (2016) and p2 is defined by

Shouler and Allwood (2010). The bottom row presents in situ pictures with DIC grids depicted in blue that cover the gauge zones.

e1

e2

O

l

d

h

θ “ arctan γ

Figure 4: Simple shear kinematics in the common frame of reference pe1, e2q. The right vertical edge is vertically displaced over a

distance d “ hγ, where γ is called shear parameter.
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deformation gradient F, right Cauchy–Green measure C and Green–Lagrange strain E yield respectively:

F “ grad y “ I ` γpe2 b e1q; (2)

C “FJF “ I ` γ2pe1 b e1q ` 2γ sympe1 b e2q; (3)

E “1
2
pC´ Iq “ γ2

2
pe1 b e1q ` γ sympe1 b e2q; (4)

where the symmetric part operator reads sym ‚ “ p‚ ` ‚Jq{2 and I is the second order tensorial identity.

The eigenvalues problem applied to the Cauchy–Green tensor leads to solutions of the form:

C “ C1V1 b V1 `C2V2 b V2 ` e3 b e3 (5)

where C1 “ 1` γ

2

ˆ

γ `
b

4` γ2

˙

, (6)

C2 “ 1` γ

2

ˆ

γ ´
b

4` γ2

˙

; (7)

and V1 9 2e2 `
ˆ

γ `
b

4` γ2

˙

e1, (8)

V2 9 ´ 2e1 `
ˆ

γ `
b

4` γ2

˙

e2, (9)

}V1} “ }V2} “ 1. (10)

In the expressions above, 9 indicates proportionality. Note that the eigendirections are nonlinear functions100

of the shear parameter.

The polar decomposition of the deformation gradient reads F “ RU where R is an orthogonal tensor (a

rotation) and U the right stretch tensor. Since C “ UJU, the stretch eigenvalues can be obtained directly:

U “ U1V1 b V1 ` U2V2 b V2 ` e3 b e3 (11)

where U1 “
a

C1 “ 1
2

ˆ

b

4` γ2 ` γ

˙

, (12)

U2 “
a

C2 “ 1
2

ˆ

b

4` γ2 ´ γ

˙

. (13)

As can be found in the literature (Salomon, 2011, page 228), the golden ratio ϕ “ p1` ?
5q{2 arises for a

unitary shear, that is when γ “ 1 or θ “ π{4. In this case, one finds U1 “ ϕ and U2 “ 1{ϕ “ ϕ ´ 1. This

means that during such a deformation, shapes are stretched by the golden ratio in their initial V1 direction

and compressed by the golden ratio in their initial direction V2.105

The expression of the right stretch in the reference basis can be obtained by substituting the eigenvectors

expressions in favor of pe1, e2q. A far easier way is to use a direct formula to compute the square root of C
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in the reference basis. The result yields

U “ 2
a

4` γ2

ˆˆ

1` γ2

2

˙

e1 b e1 ` e2 b e2 ` γ sympe1 b e2q
˙

` e3 b e3. (14)

The rotation is obtained by computing

R “ FU´1 “ 1
a

4` γ2
p2I ` γp´e1 b e2 ` e2 b e1qq . (15)

Finally, the Hencky (or logarithmic) spatial strain measure, further denoted h, is of interest for consti-

tutive modeling since it is the work-conjugate of the Cauchy stress, provided that a corotational frame of

reference is used. It is obtained by first computing the material Hencky strain that yields in the eigenbasis:

H “ ln U “ ln U1V1 b V1 ` ln U2V2 b V2 (16)

where ln U1 “ ´ ln U2 “ sinh´1pγ{2q. (17)

This convenient equivalence with the inverse hyperbolic sine function is used by Butcher and Abedini

(2017). Since the material and spatial logarithmic strains share the same eigenvalues, a rotation yields

h “ RHRJ “ sinh´1pγ{2q
a

4` γ2
p´γe1 b e1 ` γe2 b e2 ` 4 sympe1 b e2qq . (18)

In order to derive these expressions, helpful identities are recalled in Appendix A.

3.1.2. Post-processing approaches

This short section recalls the different approaches used to quantify the motion after experimental results;

it motivates the complements introduced further in the paper. The simple shear parameter is the natural

quantity of interest since it defines the motion straightforwardly. An approximation of it can be obtained by110

several means. For instance, a global estimate of the shear parameter can first be computed as d{h (figure

4) where d is taken as the grips displacements (Rauch, 1998; Bouvier et al., 2006; Khan et al., 2011).

Since global measurements can be subjected to a number of experimental biases, local estimates are

preferred as in Garcia et al. (1980) where the shear parameter γ “ 2E12 is computed from the Green–

Lagrange strain measured with strain gauges. For identifying constitutive models, a number of studies115

directly use the spatial Hencky component h12 from measurements which is comparable to the previous

approach. Translational simple shear was developed and applied to metallic thin sheet materials, e.g. Rauch

and G’Sell (1989), using a local measure of the displacement in the shear direction, using a straight line

recorded in real-time with a camera. Full-field measurements give the strain distribution over the entire

gauge length, and a fairly homogeneous distribution is highlighted by Zang et al. (2011).120
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In order to emancipate from rotations between frames of reference, tensors invariants can be used.

For example, the shear parameter utilized by (Thuillier and Manach, 2009) comes from a combination

of eigenvalues of the Almansi measure. Since this approach is performed in the eigenbasis, a potential

drawback is that the rotations of the body are not accounted for. Therefore the orientation of the sample

cannot be guarantied in absolute for an anisotropic identification.125

With modern technologies, strain components are classically obtained from an average value computed

on a homogeneous zone using field measurements techniques. These approaches are compared in section

4.1.

3.1.3. Deviation from simple shear kinematics

Local estimates based on strain measures (described in section 3.1.2) make one common hypothesis:130

the measured deformation is simple shear. In other words, it is postulated that the experimental deformation

field can be put in the form of equation (1). Also, since simple shear exhibits two different eigenvalues, the

shear parameter identification can always be performed on at least two components of the measured strain.

However, the measured deformation is never simple shear alone. Therefore, the shear parameter cannot be

uniquely defined using local strain estimates. This fact is illustrated by the results of section 4.1.135

In order to exactly and uniquely distinguish the different contributions in the measured deformation, the

following multiplicative decomposition is proposed.

Fm

»

–

Fm
11 Fm

12

Fm
21 Fm

22

fi

fl

b

“

F˚
»

–

cos µ ´ sin µ

sin µ cos µ

fi

fl

b

R˚

»

–

u1 0

0 u2

fi

fl

b

U˚

Fs

»

–

1 0

γ 1

fi

fl

b

, (19)

where Fm is the measured deformation gradient split into: a theoretical shear contribution Fs, and an un-

wanted contribution F˚. The latter is decomposed into an unwanted stretch U˚ and an unwanted rotation

R˚. The multiplicative decomposition of the deformation gradient is a tool used in several anelastic con-140

stitutive theories. It is here applied to experimental data. Thuillier and Manach (2009) already investigated

shear kinematics enriched with one parameter. The present enrichment with three parameters encompasses

all possible plane deformations.

Since the operation is not commutative, the order of the two contributions (illustrated in figure 5) must be

justified. In the proposed formulation, the theoretical contribution is applied first on the initial configuration;145
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F˚(ØÙ œ) Fs(ÓÒ)

Fs(ÓÒ) F˚(ØÙ œ)

Ω0

Ω˚

Ωs

Ω

initial
configuration

current
configuration

theoretical (fictitious) configuration

Figure 5: Possible decompositions of the measured deformation gradient. In the top case Fm “ Fs F˚, the theoretical shear is

applied after the unwanted deformation. Therefore it is not aligned with the initial orientation of the sample. In the bottom case

Fm “ F˚ Fs, the theoretical shear is applied first on the initial configuration that is controlled by the operator, hence its consistency

with the shear characterization purpose.
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then the unwanted contribution brings the effective simple shear to the current (measured) configuration with

a stretch and a rotation. This way, the simple shear is computed on the configuration that is adjusted by the

operator, with controlled placement and alignment. It is specifically relevant when the anisotropy of the

material is characterized. Had the unwanted contribution been applied first, the computed simple shear

would correspond to a possibly rotated and stretched body, in spite of the operators’ efforts to correctly150

place and align the sample and the equipment.

Expression (19) provides four scalar independent equations with four unknown parameters µ (unwanted

rotation angle), u1, u2 (unwanted stretches) and γ. It can describe any admissible two-dimensional defor-

mation and permits to separate its different contributions. Solving it leads to:

γ “ Fm
11Fm

12 ` Fm
21Fm

22

Fm
12

2 ` Fm
22

2 , (20)

u1 “
Fm

11Fm
22 ´ Fm

12Fm
21

b

Fm
12

2 ` Fm
22

2
, (21)

u2 “
b

Fm
12

2 ` Fm
22

2, (22)

tan µ “ ´Fm
12

Fm
22

. (23)

These quantities yield a robust and unambiguous definition that interpretation is straightforward. In the

ideal case, Fm
11 “ Fm

22 “ 1, Fm
12 “ 0 and Fm

21 “ γ. The corresponding unwanted deformation gradient

reduces to unity and one finds Fs “ Fm. When an unwanted deformation is introduced, it can be quantified

in terms of the rotation angle µ and unwanted stretches u1 and u2.155

3.1.4. Heterogeneity

As detailed in section 3.1.2, homogeneity is a critical assumption in the postprocessing of shear testing.

There is a need to quantitatively estimate a distance to homogeneity for each test in order to compare,

validate or discriminate them. The proposed estimator is named heterogeneity factor and given by:

spX1, tq “
d

ż l

0

ˆ

γ ´ γ̄

l

˙2

dX2, (24)

with the average along the loaded section:

γ̄pX1, tq “
ż l

0
γ dX2, (25)

where the unique γ is defined in equation (20). This is a standard deviation of the shear parameter distribu-

tion, along the longitudinal axis (parallel to the shear force), at fixed transversal coordinate. It is important
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that the function remains variable with X1 such that it is not affected by lateral boundary conditions that

would complicate any comparison between simple and pseudo-shear. The X1 coordinate also maps to a lon-160

gitudinal section of the material where the mechanical equilibrium is computed to obtain a stress estimation.

It also matters that the function is unitless so that different geometries and aspect ratios can be compared.

The standard deviation is here a natural choice since it quantifies a distance to average which is the value

that is classically taken to represent the whole strains distribution.

3.2. Sthenics165

3.2.1. Shear stresses standard identification

Stress states are much harder to access than any kinematic measure since the only available data usually

come from one force sensor, that value is denoted f . The standard approach consists in postulating the form

σ “ 2τ sympe1 b e2q (26)

for the Cauchy stress tensor, homogeneous on the sample. In this expression, τ is called the shear stress and

chosen as sthenic quantity of interest. Several works (G’ Sell et al., 1983; Garcia et al., 1980; Bouvier et al.,

2006) show that normal stresses are always present by means of mechanical balance, but can be neglected

when the ratio h{l is small enough. This means that the forces acting on the sample are assumed to be purely

shear along the loading direction. Then writing the momentum balance of a planar section A of normal e1

yields:

f “ f e2 “
ż

A
σe1 dA. (27)

Note that this expression also implies that the resulting force is assumed to be purely vertical. By means

of homogeneity and assuming a perfect match with theoretical kinematics (i.e. the initial section remains

vertical with unchanged area), the integral simplifies and one finds

τ “ f {A0, (28)

where A0 is the initial cross-sectional area of the sample.

But the assumptions of perfect alignment and theoretical shear deformations are no longer needed when

field measurement techniques can quantify any deviation. The remaining challenge is therefore to find an

appropriate stress measure that fits with the proposed theoretical shear parameter identification. In the fol-170

lowing sections, consistent stress measures are derived as the work-conjugates of the theoretical contribution

to the effective motion. Then the momentum balance is revisited to allow their identification.
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3.2.2. Consistent lagrangian stress

The shear parameter γ is the lagrangian kinematic quantity of interest. Its conjugate scalar stress is

derived below. The power of internal forces developed in a material element of the initial configuration dΩ0

reads

pi “ JΠ : 9F (29)

where J “ det F is the deformation jacobian and Π the first Piola–Kirchoff stress tensor. Under the as-

sumption of isochoric deformation in elasto-plasticity, it is assumed to be unity. Applied to the measured

deformation and using the multiplicative decomposition (F “ Fm “ F˚Fs), the previous expression can

be split into a theoretical part and an unwanted contribution.

pi “ pΠFsJq : 9F˚

p˚
i

`p
Πs

F˚JΠq : 9Fs

ps
i

. (30)

The terms under parentheses refer to stress measures that conjugate with, respectively, the unwanted and

theoretical motions. They can be computed from measurements given the knowledge of Π . Substituting

tensors for their expressions in the reference basis, the theoretical part of the power of internal forces reads

ps
i “ pΠ11u1 sin µ` Π21u2 cos µq

Πs
21

9γ. (31)

In the above, Πs
21 is the component of the theoretical Piola–Kirchoff measure, that is the tensor that con-

jugates with the theoretical deformation gradient in the sense of mechanical work. Nevertheless, spatial175

measures such as the Cauchy stress are often preferred in the context of constitutive modeling.

3.2.3. Consistent eulerian stress

The symmetric velocity gradient d “ symp 9FF-Jq is the eulerian kinematic quantity of interest. In

the following developments, the simple shear contribution to this velocity gradient is isolated, and the

corresponding conjugate stress identified. A push forward can be applied to expression (29) to write the

power of internal forces on a material element of the current configuration dΩ using spatial quantities:

pi “ σ : p 9FF-Jq. (32)
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This is equivalent to the conventional writing (σ : d) since only the symmetric parts of the right operands

are multiplied. Introducing the decomposition F “ F˚Fs, then isolating ds “ symp 9FsFs-Jq, leads to

pi “ σ : p 9F˚F˚-1q ` skewpF˚JσF˚-Jq :

ws

skewp 9FsFs-Jq
p˚

i

`
σs

sympF˚JσF˚-Jq :

ds

symp 9FsFs-Jq
ps

i

(33)

In this expression, ds and ws respectively represent the symmetric part and the skew-symmetric part of the

theoretical velocity gradient. Developing the theoretical contribution to the power of internal forces taking

an arbitrary stress state σ “ σi jei b e j brings:

ps
i “

u1 ` u2

2u1u2

`

σ21pcos2 µ´ sin2 µq ` pσ11 ´ σ22q cos µ sin µ
˘

σs
21

9γ

2ds
21

. (34)

This expression reduces to the conventional writing, pi “ 2σ21d21, in the absence of unwanted deforma-

tions. Otherwise, it can be seen as a way to adjust the experimental results by enforcing the consistency of

strains and stresses. It must be based on the measurement and partition of the deformation gradient.180

3.2.4. Momentum balance

In the present section, the developments of section 3.2.1 are rewritten without postulating perfect align-

ment or ideal kinematics. A correction factor is derived using information provided by field measurement

techniques. The starting point for constitutive identification is the vertical section momentum balance pre-

sented in section 3.2.1.

f “ e2

ż

A
σe1 dA “

ż

A
σ21 dA. (35)

This integral is performed in the spatial configuration, therefore there is no guaranty that it follows any

material direction. Moreover, its numerical handling is not direct since it requires interpolations on the

moving grid of material points that DIC provides. Let us apply a pull back to the reference configuration:

the integration now applies over the first Piola–Kirchoff stress JσF-J.

f “
ż

A0

Fm
22σ21 dA0. (36)

Note that the assumption of ideal kinematics is not made since field measurement results are used. This

integral applies over a material subdomain, hence its better consistency with characterization and ease of

computation given a DIC grid. The deformation gradient component is substituted with its decomposition
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Fm
22 “ u2 cos µ from (19). The total stress is also written as a function of the theoretical stress using (34).

f “
ż

A0

χpFqσs
21 dA0 (37)

where χpFq “ 2u1u2
2 cos µ

pu1 ` u2qpcos2 µ´ sin2 µq . (38)

This writing ensures that the identified stress is consistent with the computed kinematic measures. It is

represented by the factor χpFq that reduces to 1 in case of no unwanted deformation. Using the usual

homogeneity assumption, it can provide a minor correction to the computed stress measure.

4. Results and discussion185

In order to set a reference that is used throughout the paper to compare different setups, let the average

shear Γ be defined as:

Γ “
ż αh{2

´αh{2
F21 dX1 (39)

where h is the width of the gauge zone (horizontal directions in figure 2), and α a chosen coefficient. In the

above expression, the center of the gauge zone is taken at pX1 “ 0, X2 “ 0q. The length ratio α is taken

equal to 0.75 in order to avoid issues linked to the loss of data at the gauge zone edges. The average shear

is used in place of the grips displacement that can critically loose local significance for pseudo-shear.

4.1. Shear parameter identification190

Figure 6 presents several shear parameter estimates as a function of the normalized testing time of

two samples: simple (left) and pseudo-shear (right). The estimates are based on several measures: the

raw deformation gradient (F21, equation (2)); the Green–Lagrange strain (E11, E12, expression (4)), and

its eigenvalues (Ei “ pCi ´ 1q{2, expressions (6) and (7)). The last set of points is deduced from the

decomposition (19). These data are taken from the subset corresponding to the middle of the sample, with195

no addition smoothing or averaging.

Since the effective deformation always deviates from theoretical simple shear, each approach yields a

different result. The overall relative dispersion reaches up to 20 %: up to 0.1 in simple shear and 0.4 in

pseudo-shear that reaches much higher strains. Such a difference is notable and inherent to shear testing:

it may not be significantly reduced by acting on the experimental setup or equipments. This scattering of200

results justifies the necessity of a reliable definition as proposed in equation (20), that is consistent with the

characterization purpose and invariant with respect to the precision of the setup.
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Figure 6: Comparison of different shear parameter estimates at the center of the gauge zone for one simple shear test and one

pseudo-shear test. A significant dispersion is due to the fact that the actual deformation always slightly deviates from the ideal

simple shear.

4.2. Deviation from simple shear

A classical way to check the deviation from simple shear is to compare the eigenvalues of the measured

spatial Hencky strain. If they are equal in magnitude and opposite in sign, then the deformation taking place205

is simple shear as written in expression (17). But this approach suffers from two disadvantages that are

solved by the proposed method; they are both due to disregarding the orientation of the eigenbasis. While

equal and opposite eigenvalues guaranty shear, they do not hold any information about the direction of the

deformation, hence the right load type might take place in the wrong material orientation. This is an issue

when characterizing anisotropic materials. Moreover, a deviation from equal and opposite eigenvalues210

means plane stretches that may not be characterized in the absence of information about eigenvectors.

In this section, the stretches of decomposition (19) are used to quantify the importance of the unwanted

deformation.

Note that the rotation R (from the polar decomposition) given in (15) indicates that the material frame

itself rotates continuously (and non-proportionally) as simple shear proceeds. As emphasized by Chen et al.215

(2018) and Abedini et al. (2020), this causes the eigenbasis of any strain or stress measure to reorient with
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plastic deformation. It does so regardless of the initial orientation and forbids any material alignment to be

conserved or controlled.

A comparison between the four considered geometries is performed in figure 7. For the sake of consis-

tency, the global estimate of the shear parameter is fixed at Γ “ 0.5 for all tests. Therefore the presented220

figures are only snapshots and the reported quantities vary with the deformation.

The figure is composed of four regions corresponding to each geometry. On the top of each region,

a colored map gives the spatial distribution of the order of magnitude (decimal logarithm) of the error on

the DIC region shown in figure 2. The error is taken as the Frobenius norm of the difference between

the unwanted stretch and unity: }U˚ ´ I}. It corresponds to a kinematic distance from simple shear. The225

middle shearing axis X2 is added on each map as a white dashed line. On the bottom, each component

of the deformation gradient is plotted along the middle axis. The deviation from ideal kinematics can be

observed as the vertical distance between each point and the theoretically homogeneous state represented

by F11 “ F22 “ 1, F21 “ 0.5 and F12 “ 0.

It can first be observed that the error magnitude is overall slightly higher on pseudo-shear tests. It can230

be understood by noticing darker shades on the error maps of figure 7, or more clearly by looking at the

distance between the measured deformation gradient components and their theoretical value of 0, 0.5 or 1.

This is consistent with the fact that resulting shear forces are imposed rather than shear kinematics. The

error tends to stabilize in the middle of the samples and rises up to significance (0.1) at their edges. In an

similar way, the components of the deformation gradient remain stable in the center of the sample and loose235

homogeneity at the left and right limits. This is due to the free edges of the samples that imply null stresses,

hence forbid shear. The order of magnitude of both components u1 and u2 remains equal throughout the

deformation.

Another problematic is illustrated in figure 7-s2 where the deformation gradient is visibly asymmetric.

A probable cause lies in a default of alignment between the machine and the DIC approximation basis. It240

may not be easily solved during postprocessing since the misalignment may change as the test proceeds.

For example, in the present case, the slight rotation of the device occurred shortly after the beginning of

the test. While the pseudo-shear tests appear larger due to their aspect ratio, their smaller gauge region

implies fewer data. Because of their greater accuracy and more available data, simple shear tests appear

more reliable to recreate the ideal kinematics of shear testing.245
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Figure 7: Snapshots of the unwanted strains and deformation gradient components for the four different samples at Γ “ 0.5.

The figure is divided into four regions presenting: on top, the shear error map and the longitudinal X2 axis; on the bottom, the

deformation gradient components distribution along the axis. The aspect ratios of the images are conserved: the simple shear maps

appear much smaller because of the slenderness of their geometry. The “error” measure is chosen as the order of magnitude of the

norm of the difference between the unwanted stretches U˚ and identity.
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4.3. Heterogeneity

In figure 8, the order of magnitude (decimal logarithm) of the heterogeneity factor s from equation

(24) is represented as a colored map function of space (X1) and average shear (Γ) for each of the four

considered sample types. The color of each point of the maps thus gives a measure of the heterogeneity

of the corresponding longitudinal section, at the corresponding instant. Understandably, heterogeneity is250

lower at the bottom of the graphs, that is the beginning of the tests; and increases monotonously with shear

intensity.

An additional set of data named “not a number (NaN) fraction” is added on each plot in the form of

isolines. It gives the proportion of points which do not hold a value when the DIC algorithm diverges. This

can be interpreted as a ratio of length that has to be extrapolated for the remaining data: an increase of this255

value necessarily decreases the results credence. It is systematic as a test proceeds and distortions intensify.

Simple shear tests s1 and s2 show an increase in heterogeneity at the edges of the sample, which

corresponds to a lack of measuring precision induced by the presence of grips. Both the NaN fraction

and heterogeneity factor show a better quality at the center of the sample. The opposite is observed for

pseudo-shear tests p1 and p2 where measurements tend to increase in quality and homogeneity as they are260

performed far from the center. It can be problematic since the mechanical state is less clearly defined on the

sides of the pseudo-shear gauge zone, where the loading path mixes tension and shear.

In quantitative terms, the homogeneity is better by up to an order of magnitude for simple shear tests.

This is likely due to the length ratio that is always more favorable in simple shear. In conclusion for

the considered material and four geometries, the exact middle of the sample is a natural choice for post265

processing. It should be chosen either to measure an average strain or to apply the momentum balance on a

vertical cross-section (section 3.2.1).

4.4. Stress correction

Equation (34) features the shear component σs
21 of the Cauchy–like stress measure that conjugates with

the theoretical shear strain rate. This corresponds to a fictitious configuration where unwanted deformations270

are canceled. Using the standard assumption for the measured stress allows to use definitions (26) and (28).

Then the coefficient p1´σs
21{τq can be seen as the proportion of stress that works in the unwanted motion.

This factor is shown in figure 9 where simple shear trends (left hand side) are compared to pseudo-

shear (right hand side). It can be seen that the distance increases with increasing strains, specifically in

the case of pseudo-shear where shear kinematics are not explicitly prescribed. This error can reach several275

22



0 0.2 0.4 0.6 0.8
0

1 ¨ 10´2

2 ¨ 10´2

3 ¨ 10´2

4 ¨ 10´2

Γ “ 0.5

average shear Γ

st
re

ss
co

rr
ec

tio
n

1
´
σ

s 21
{σ

21

sample s1
sample s2

0 0.2 0.4 0.6 0.8 1 1.2

Γ “ 0.5

average shear Γ

sample p1
sample p2

Figure 9: Relative difference between theoretical and measured shear stresses. The factor can be seen as a correction applied on

the total stress to remove the part that conjugates with the unwanted deformation.

percents which can be significant in the context of a thorough characterization. These values correspond to

an order of magnitude that can be improved or worsened depending on the experimental setup precision.

The stiffness of the simple shear setup nonetheless ensures small deviations throughout the experimental

campaign.

4.5. Work–hardening280

Figure 10 compares typical work-hardening curves obtained for each of the four sample types, and

provides a reference tensile test in the rolling direction. The equivalent stress is computed as the von Mises

norm σ̄ “ a

3{2 ||devσ||. The corresponding strain ε̄ is integrated to satisfy the plastic work equivalence:

σ̄ 9̄ε “ σ : 9hp (40)

where 9hp is the plastic strain. Its component are obtained using the theoretical shear parameter (20) and

the spatial Hencky tensor (18) neglecting elastic strains. A similar comparison is proposed by Hérault et al.

(2021). The same material is used and work–hardening data are also compared using von Mises equivalent

stress.

Among shear tests, a difference of up to 2 % can be observed among similar geometries (s1–s2 or285

p1–p2) while simple shear can differ from pseudo-shear by up to 8 % in terms of stress magnitude at fixed

strains. Therefore the present approach does not suffice to unify results from different loading techniques.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

work-equivalent von Mises strain ε̄

vo
n

M
is

es
st

re
ss

(M
Pa

)σ̄

pseudo-shear sample p1
pseudo-shear sample p2
simple shear sample s1
simple shear sample s2
tensile sample

Figure 10: Work–hardening results after shear (p1, p2, s1, s2) and tensile tests in the rolling direction. The plots stop when

fracture (or necking) is reported on the shear (or tensile) sample.

Since kinematic assumptions are here removed, it appears that a finer evaluation of the stress tensor field is

needed to further converge.

5. Conclusions290

Owing to field measurements methods, this work aims to assess and improve the performance of the

characterization of sheet metals under shear. After a thorough recall of the kinematics of simple shear, the

deviation from theory to experiments is quantified in terms of tensorial direction and heterogeneity. Then

the experimental biases are taken into account to derive stress measures that consistently conjugate with

the theoretical shear strain. This way, the unavoidable experimental errors can be accounted for during295

post-processing.

The theory is applied to four types of tests performed on dual phase steel sheets. Heterogeneity and

deviation factors are used to compare the quality of the experimental implementations, and an identification

of the shear parameter is performed while avoiding the emphasized biases. A DIC-based correction factor

is also proposed to adjust the stress results.300

The main contributions of this work can be emphasized as follows.
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(i) An unambiguous definition of the shear parameter is proposed by splitting the effective deformation

gradient into theoretical and unwanted contributions.

(ii) The corresponding stress measures are provided for the consistency of post-processing.

(iii) Estimates of measurement errors and quality are defined in the form of heterogeneity factors and305

unwanted deformations components. They enable the quantitative comparison of the quality of tests.

The kinematic decomposition can be straight-forwardly extended to any plane state experimental testing

procedure to lift ambiguities in kinematics postprocessing. It is here emphasized that, for the considered

material and specimens, simple shear is in general more reliable than pseudo-shear, even though the latter is

unavoidable in cases such as fracture characterization. The measured deviations remain largely acceptable310

and do not disqualify any technology on the whole.

The remaining hypotheses that require attention and improvements concern the stress states. The com-

ponents of forces perpendicular to the shear direction can be measured given a supplementary experimental

effort (G’ Sell et al., 1983). Nevertheless, the variations of stress along the shear direction remain an unre-

solved challenge towards the complete characterization in shear. In this context, rather than seeking more315

comprehensive data, one may improve their analytical treatment: this is the approach exemplified in the

present work. The third type of improvement is computational and could lie, for example, in non paramet-

ric measurements such as data-driven identification (Leygue et al., 2019).
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Appendix A. Shear deformation identities

The following identities are, if not trivial to the reader, useful when expanding definitions in order to

obtain the results summarized in section 3.1.1.
d

γ

2

ˇ

ˇ

ˇ

ˇ

γ ˘
b

4` γ2

ˇ

ˇ

ˇ

ˇ

` 1 “ 1
2

ˇ

ˇ

ˇ

ˇ

γ ˘
b

4` γ2

ˇ

ˇ

ˇ

ˇ

, (A.1)

1
2

ˆ

γ ˘
b
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˙2
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γ ˘
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4` γ2

˙

, (A.2)

1
2

ˆ

γ ˘
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