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Introduction

Context of my research

This document is a summary of my research conducted within Obelix team1 of IRISA lab since 2012 as
an assistant professor. My research has mainly focused on the development of machine learning tools
for structured data, originally applied to Remote Sensing (RS) data, and more recently directed toward
methodological work in Optimal Transport (OT) for Machine Learning (ML).

My PhD thesis [O2] took place at IRSTEA in Clermont-Ferrand and dealt with the problem of
defining control policies to maintain the viability or the resilience of a dynamical system. In opposite to
optimal control that seeks the dynamical system to reach an optimal value, viability theory deals with the
problem of finding action policies that keeps indefinitely the dynamical system within an acceptable range
of constraints. Note that all the initial states may not be able to reach this objective; the set of initial
states for which such a set of control policies exists is called the viability kernel. In this thesis, I proposed
to use Support Vector Machines to construct the viability kernel, which provides a kind of barrier function
useful to use optimization techniques to find the appropriate action policies, avoiding the computationally
intensive discretization of the control variables, allowing one to alleviate the dimensionality curse related
to the dimension of the control variables.

I then joined the National University of Ireland Maynooth as a research fellow. My main work there
was still focused on defining new solutions for dynamical systems relying on ML tools. In particular, I
addressed the problem of sparse identification of the input matrix parameter in linear systems. Taking
advantage of the connections between Kalman Filters and least square estimation, I formulated a filter
that combines state and sparse input matrix estimation as a `1 regularized least square optimization
problem [C18].

I was recruited at Université Bretagne Sud as an assistant professor at the end of 2010. Making the
analysis that the research themes dealt with my original research team did not enthral me, I took place in
2012 in the creation of a new Irisa team Obelix, whose research themes are centered on the understanding
of environmental systems through observations. Here again, ML is a key to learn from (possibly series
of) large amount of structured data available from, among other, RS images. I saw, in the problematics
tackled by the team, a lot of common features with my previous works, but also new challenges mainly
related to the objects of interest. Indeed, these are highly structured data in the sense that we often
deal with time series of geographically structured pixels that can be represented as trees or graphs.
My involvement on the ANR project Asterix (2013-2016), standing for “Spatio-Temporal Analysis by
Recognition within Complex Images for Remote Sensing of Environment”, was a great opportunity to
focus on these new research themes.

Remote sensing data processing has long been conducted at pixel level but the significant develop-
ments on the spatial resolution front have led to the emergence of object-based image analysis, that no

1Obelix stands for environment observation with complex imagery.

http://www-obelix.irisa.fr/
http://www.irisa.fr/
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longer handles every pixel independently, but rather in contextual groups, thus increasing significantly
the involved information extraction capacity. In particular, multiscale models such as hierarchical repre-
sentations (or trees) have been proposed and widely acknowledged as the appropriate solution since they
enable modeling efficiently the relations between different image objects at multiple detail levels. Then,
it seemed to me that it was an important and challenging problem to be able to tackle those hierarchical
representations efficiently in order to perform RS images classification to, e.g., produce land cover land
use maps. Defining new kernel-based learning methods able to deal with data structured as trees was the
theme of the PhD of Yanwei Cui [Cui 2017a], that I co-supervised with Sébastien Lefèvre, who started in
2014. He defined new kernels able to deal with hierarchical data described by continuous attributes and
showcased their interest in the RS data classification context. More recently, hyperbolic spaces attracted
my attention. They are geometrical spaces that inherently encode very efficiently tree-structured data.
This motivated the launch of the PhD thesis of Manal Hamzaoui (started in 2019, co-supervised with
Sébastien Lefèvre and Minh-Tan Pham) whose aim is to take benefit of the hyperbolic geometry in the
context of RS image classification.

At the same time, and driven by my past interests with dynamical systems, I started to get interested
in processing observed time series of data. Indeed, the launch of numerous space programs as well as
Earth Observation satellites, such as Copernicus, has led to an abundance of series of satellite images
with a given temporal resolution (Sentinel-2 possesses a revisit cycle between 5 to 10 days). Consequently,
processing paradigms become mandatory in order to manage this mass of timely structured data. This
motivated the PhD of Adeline Bailly [Bailly 2018] that I co-supervised with Romain Tavenard, and the
post-doc of Pierre Gloaguen (2017-2019, co-supervised with Romain Tavenard and Chloé Friguet) within
the context of the ANR Sesame (2017-2020). Dealing with time series is a challenging problem as one
should take into account the temporal correlation that exists between the observations, the possibly
high dimensionality and the noise that is often present in RS series of images. Hundreds of dedicated
machine learning tools for dealing with this specific object exist, whose interest depends on the view
over what phenomenon drives the data and how the temporal behavior should be (or not) included in
the data. Adeline focused on defining accurate representations of the data, allowing better classification
performances in a wide range of scenarii. Pierre’s targeted the problem of clustering a huge amount of
trajectories using continuous time models. We also studied how incorporating a temporal localization
information efficiently. Finally, I supervise the PhD of François Painblanc (started in 2019, co-supervised
with Romain Tavenard and Chloé Friguet) whose aim is to develop dedicated machine learning tools
for domain adaptation dedicated to time series (e.g. when series of data are labelled in one year, and
that a classification should be performed the following year, with a difference in the evolution of the
phenomenon that is under study). These works are funded by the ANR MATS, standing for “Machine
Learning for Time Series”.

Remote sensing images can also be represented as graphs, representing the relations that may exists
between the features and/or the localization of superpixels/regions. It drove me to the study of graphs as
objects of interest, and to study the problem of how classifying them efficiently. This was the topic of the
PhD of Titouan Vayer [Vayer 2020a], co-supervised with Nicolas Courty and Romain Tavenard, that took
place within the ANR OATMIL (“Bringing Optimal Transport and Machine Learning Together”) project.
In this context, we built new metrics to compare graphs (among other structured data), relying on tools
from optimal transport. We introduced the Fused Gromov-Wasserstein distance which has been shown
to be effective in comparing benchmarked graphs, studied some theoretical properties of this distance,
and also proposed the Sliced Gromov-Wasserstein distance, allowing Gromov-Wasserstein to scale well
with the number of points.
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Strong from this experience in dealing RS structured data, I launched in 2019 an international ANR
project entitled MULTISCALE (MULTI-variate, -temporal, -resolution and -SourCe remote sensing image
Analysis and LEarning) together with researchers in Turkey (PI: myself from the French side, Erchan
Aptoula from the Turkish side). This research project aims at providing a complete and integrated
framework for multiscale image analysis and learning with hierarchical representations of series of complex
remote sensing images.

Almost independently from the RS integration of my research, I got interested in one major drawback
(to my viewpoint) of optimal transport for machine learning: all the information has to be transferred
from one source domain to a target one. This hypothesis does not make sense in the machine learning
context as the observations are often polluted by noise, can contain outliers or may suffer mislabeling
issues. It gave rise to my interest for partial or unbalanced optimal transport, that I tackled from a
methodological point of view, with the aim to develop new solutions to solve the problem. These works
are the starting point of the thesis of Guillaume Mahey (co-supervised with Gilles Gasso), who started
in November this year, whose aim is to define optimal transport tools for out-of-distribution detection,
within the context of the ANR RAIMO (“Vers une intelligence artificielle sûre pour la mobilité”).

Learning from structured data
What are structured data? In many domains, the data can be decomposed into a set of entities
that possess an intricate internal structure usually in the form of one or more relations between
them [Battaglia 2018]. In comparison to usual “flat” data represented in a sample×features table (or
tabular format), structured data not only involve entities and their description, but also describe the
connectivity between them. Typical instances of structured data are images, sequences, trees or graphs
and are ubiquitous in many learning tasks. For example, machine translation consists in automatically
converting a sequence of symbols in some language into a sequence of symbols in another language. Time
series forecasting aims at predicting future events through a sequence of timely dependent observations.
Link prediction in networks has ubiquitous applications in biological, social or transportation networks.
Multiscale image segmentation consists in dividing an image into homogeneous regions that are included
one into an other depending on the scale we consider.

Graphs are often used as models of systems of entities and relations. A graph G = (V, E) is a collection
of nodes V describing the entities (that can be endowed with features) and of edges E ⊆ V × V (directed
or undirected) that represent the relations. Trees are connected acyclic undirected graphs. When the
order matters, sequence and times series are instances of directed graphs with fixed ordering (see figure 1).
Graphs give rise to a property that may be satisfied: the permutation invariance property or isomorphism.
Two graphs are isomorphic when there exists an edge-preserving bijection between them, that is to say
when they are identical up to a reordering of their nodes. This is a key property when dealing with
structured data as the entities, except time serie or sequences, are not provided in any particular order.

Main learning streams for structured data. Learning from structured data presents specific chal-
lenges as i) the commonly used feature-attribute representation may not hold and different instances may
have different lengths ii) the i.i.d. assumption may no longer be applicable iii) the relational property
should be taken into account. One consequence is that the usual techniques for classifying numerical data
are not directly applicable and it calls for the need of a rethinking of the main questions of machine learn-
ing (see figure 2): i) how to accurately represent the data such that the resulting embedding describes
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Figure 1: The two labeled graphs G1 and G2 are isomorphic as there exists a vertex bijection which is both
edge-preserving and label-preserving. The two trees T1 and T2 are connected acyclic undirected graph that are
isomorphic. Time series are a special instance of directed graphs that has a fixed neighborhood structure with a
fixed order. Time series S1 and S2 are not identical here as the ordering of the nodes conveys temporal information
that should be taken into account.

efficiently both the feature and the structure information? ii) how to define a appropriate measure of
distance between two structured data? One key question is also how to deal with noise and/or mislabeled
samples.

One main stream for dealing with structured data is to look for an “appropriate” embedding in
order to come down to a propositional (i.e. based on feature-vector representations) learning algorithm.
The problem is then to construct a new set of features that captures the relational properties of the
data. Such a transformation is sometimes referred to as propositionalization [Kramer 2001]. This is
the aim of the bag-of-word technique [Sivic 2008] which extracts features from text documents and
structured data in general; efficient solutions when dealing with sequences of words are now Word2vec
[Mikolov 2013] or Glove [Pennington 2014] and take as input a large corpus of text and produces a vector
space, in which words that share common contexts in the corpus are located close to one another in the
space. Graph embedding aims at representing graphs as low dimensional vectors such that the graph
structures are preserved [Cai 2018]. Struc2vec [Ribeiro 2017] learns latent representations of the nodes
of the graph that encodes structural similarities and context. Rather than considering Euclidean spaces
that may be unfit for representing structured data, some other lines of research embed the data into
spherical [Davidson 2018], hyperbolic [Nickel 2017] or even a combination of those spaces [Gu 2018],
allowing a better latent representation in lower dimensional spaces. When it comes to time series,
dictionary-based classifiers describe the series as representative words: shapelets [Lines 2012] are time
series subsequences which are representative of a class; SAX [Lin 2007] is a symbolic representation of
time series; dynamic topic models [Wang 2008] are generative models that describe the evolution of
topics (i.e. a distribution over features) of a collection of documents (i.e. bags of extracted features)
over time. Deep learning has been widely employed to address specifically the problem of time series
forecasting or classification, the most popular models probably being recurrent neural networks RNN and
long short-term memory LSTM. RNN model the temporal dependency by connecting each time step with
the previous one; LSTM [Hochreiter 1997] can be seen as an instance of RNN that learns the temporal
aspect in larger horizon by keeping track of short-term patterns; more recently, another type of recurrent
unit, gated recurrent unit (GRU) [Cho 2014], has been shown to perform well on tasks with long term
dependencies in this context.

There has been a long history of designing dedicated distance or similarity measures between struc-
tured data as many machine learning algorithms require assessing how (dis)similar two objects are. Here
we name a very few of them in a structured data context. Dedicated distances exist for sequences, e.g. the
Levenshtein distance [Levenshtein 1966] which is defined as the number of edit operations that one needs
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Figure 2: (Left) The two graphs G1 and G2 are embedded in a d-dimensional space in which they can be easily
compared. (Right) The two graphs G1 and G2 are compared thanks to a dedicated function that operates directly
on the structured data.

to perform on one sequence in order to obtain the second; dynamic time wrapping (DTW) [Sakoe 1978]
deals with time series. When it comes to probability distributions, the Kullback–Leibler divergence [Kull-
back 1951] or the Earth Mover distance [Rubner 2000] are state-of-the-art metrics. The graph isomor-
phism problem [Babai 2018] deals with the problem of determining whether two finite graphs are iso-
morphic, i.e. looks if there exists a bijection between those graphs; graph [Vishwanathan 2010] (resp.
tree) kernels may be instances of convolution kernels that combines distances computed on substruc-
tures [Vishwanathan 2004]. The global alignment kernel [Cuturi 2011] is a weighted combination of the
set of all possible alignments between time series.

The case of incomparable spaces. In most of the previous approaches, the main challenge is to
compare data that live in incomparable spaces, that is to say data that have their own information that
may be not shared with the others. Propositional data are usually structured as common feature vector
representation that is handy to cope with. On the opposite, relational or structured data may not share
the same features but also carry extra information about the structure that has to be incorporated
into the learning process. When dealing with a dataset composed of several graphs or trees, the latter
may not have the same number of nodes neither the same set of attributes or even edges. This also
encompasses the case when the data are collected under distinct environments, representing different
times of collection, contexts or measurement modalities (e.g. when different sensors are used to measure
related quantities). Dedicated paradigms such as heterogeneous domain adaptation [Yeh 2014], directly
take into account this problem in the learning process. This is a situation that is very often encountered
in remote sensing for example, when the same area of interest has be caught at different times with
different captors [Voreiter 2020]. One other approach is to learn, based on some prior knowledge w.r.t.
some invariance, classes in order to be more robust to irrelevant feature transformations [Battaglia 2018].

Contributions and articulation of this document

Over the last 10 years in the Obelix team, I have focused on designing ML methods and algorithms that
deal with structured data. In this document, I have sum up some of my contributions; the “we” or “our”
formulations reflecting that they have always be performed in collaboration with some colleagues. The
manuscript is organized in three parts, mostly chronologically:
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Contributions to machine learning for remote sensing images. The first part of this document
sums up our oldest works (2014-2017) that deal with remote sensing images as spatially structured
objects of interest. Indeed, the significant advances on the spatial resolution front have led to the
emergence of object-based analysis, in which images are described as contextual groups, that may be
organized hierarchically, depending at the scale we are dealing with. I sum up some of our contributions
in designing dedicated tree-kernel based methods in this context. I also describe some works that studied
how a manifold learning algorithm is interesting to perform hyperspectral image classification. Albeit
older, these works are the base of more prospective current works that are described in the last chapter
of the manuscript.

Contributions to machine learning for time series. The second part deals with our works (2015-
2021) related specifically with time series as objects of interest. It starts with a brief description of
some particular challenges brought by time series in the ML community. The description of our works
is divided into two chapters: the first one relates with solutions that rely on efficient and effective time
series embeddings, such as bags-of-words or continuous time descriptions of the time series, while the
second one focus on contributions in designing dedicated similarity measures between time series, among
which a dedicated temporal kernel and a DTW-based metric that rely on aligned time series.

The aforementionned works mostly rely on “classical” and well-established machine learning tools
such as kernels or bags-of-words. At some point, the question that arised was if there were not some
more powerful tools for dealing with structured data. It then led me to consider optimal transport that
has been recently successfully introduced in the machine learning community in a wide range of learning
applications (see the discusion about optimal transport and machine learning in section 6.4), but at this
time, mostly on vectorial data.

Contributions to Optimal Transport for Machine Learning, with a focus on graphs. The
last chapter is then dedicated to our more recent works (from 2019 to 2021) that aim at exploiting
the geometrical properties of optimal transport (OT) to design a new metric to compare graphs, namely
the fused Gromov-Wasserstein distance (FGW). Optimal transport has been quite recently introduced
in the machine learning community and is now an integral component of many core ML methods. This
has brought new challenges to the OT community, with thus a need to design new theories and efficient
frameworks to make OT and ML more compliant.This drove us to also propose contributions in designing
OT solutions that allow i) dealing with outliers or noise ii) designing solutions that are more large scale
compliant. This part starts with an introduction of the main ingredients of OT.

Global summary of my research and perspectives. Finally, this document ends with some still
open challenges and some research perspectives.
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Chapter 1

Machine Learning for Object-Based
Image Analysis in Remote Sensing
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The aim of this chapter is to set the scene of machine learning for complex remote sensing data.
We start by giving the main features and challenges related to complex and structured remote sensing
data, then we focus on the special case in which the data are represented as hierarchical representations.
GEOgraphic-Object-Based Image Analysis framework [Blaschke 2014] has gained increasing interest and
is today a paradigm for remote sensing image processing beyond conventional pixel-based analysis. In
this framework, hierarchical image representation is the key concept –meaningful objects are obtained
from multiscale image segmentations– , and spatial relationships among objects are encoded in a tree
structure.

1.1 Remote Sensing data are complex and inherently structured

1.1.1 The era of complex remote sensing big data

Besides the significant developments in terms of spatial and spectral image resolutions, the past decade
has also witnessed an impressive increase in the availability and rate of acquisition of remote sensing
images. While their cost of acquisition was one the main reasons behind their scarcity in the past, the
launch of the Copernicus program has led nowadays to the provision of free data. In particular, remote
sensing data are now characterized by its volume (multiple petabytes per year) and variety: we can now
easily access and obtain multiple (LiDAR, SAR and optical) images at various spatial (e.g. SPOT4 at
10m, SPOT5 at 10m, Pleiades at 2m), spectral (multi- and even hyperspectral images) and temporal
(Sentinel-2 possesses a revisit cycle between 5 to 10 days) resolutions for a given geographical region
of study. In parallel to this development, there is a significant rise in the number of both public and
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private satellites (Pléiades, WorldView 2-3 etc.) capable of providing very high spatial resolution images
(<2m) as well as of aerial missions able to enrich these data through LiDAR and hyperspectral images.
Moreover, the description of a given region of interest can be further reinforced through geographic
databases or even expert knowledge. Consequently, original processing paradigms become mandatory in
order to manage this mass of heterogeneous data, exploit their inherent complementarity and accomplish
various tasks such as land-use monitoring and natural disaster management.

1.1.2 Some challenges related to structured and complex remote sensing data

The general challenge of machine learning for Earth Observation is to transform this impressing amount
of data into knowledge. Due to the inherent structure of the data, several challenges have then emerged
in the past years.

High resolution: correlation within the spectral and within the spatial domain. High reso-
lution comes from both spectral and spatial domains. In the spectral domain, the hyperspectral image
sensors allow the acquisition of the signal in hundreds of spectral wavelengths for each image pixel, with
correlated dimensions. It induces problems related to the high dimensionality of data, especially in the
case of limited availability of training samples. It is then customary to reduce the dimensionality into
a representation that still account for the structure of the data. (Non-)Linear dimensionality reduction
such as PCA or LDA methods have been found to be very efficient and effective methods in that context.
Manifold learning algorithms assume that the original high dimensional data actually lie on an embed-
ded lower dimensional manifold. The mapping of the data from high to low dimensional spaces can
also be learnt thanks to learning algorithms such as ISOMAP [Tenenbaum 2000] or local linear embed-
ding [Roweis 2000], whose aim is to provide a low-dimensional space that preserves the local neighboring
relationships of the high-dimensional data. For a long time, kernel methods have been state-of-the-
art methods for hyperspectral image analysis [Camps-Valls 2006] but more recently, deep models have
demonstrated their potential to extract discriminative features between different classes in the remote
sensing context [Li 2019,Yuan 2015]. Learning the manifold structure or extracting appropriate feature
for remote sensing images are still under active study by the community, such as the very recent works
of [Taskin 2021] or [Baisantry 2021].
Another challenge is related to high spatial resolution. The availability of Very High Spatial Resolution
(VHSR) images provides submetric resolution, allowing the exploitation of the fine details of the observed
scene, where additional information such as texture, shape of complex objects or even structure of the
object composition can be better revealed. We thus observe a high spatial autocorrelation of remote
sensing imagery, with every pixel that are more likely to “look like” their neighboring pixels (see figure
1.1). Beyond the large volume of data that has to be tackled, the spatial and the autocorrelation structure
has then to be taken into account. Contextual local visual features such as SIFT have then been defined
to compute a holistic image representation [Yang 2008]. One other option is to rely on homogeneous
superpixels (see section 1.2) that allow adaptive partition of remote sensing imagery into meaningful
objects with coherent spatial properties [Lv 2019]. Dedicated network architectures are also used in
this context, e.g. capsule networks that uses groups of neurons that can encode spatial information of
features [Zhang 2019].

Multi-modality. Remote sensing data often come from several sensors, possibly with different spatial
and spectral resolutions, different acquisition conditions, different views, different nature or even addi-
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Figure 1.1: Urban scene taken over South of Strasbourg, France. (Left) false color image of Pleiades ( c© CNES
2012, distribution Airbus DS / Spot Image) with 50 cm resolution, and the associated ground truth ( c© LIVE
UMR 7362) whose labels form large homogeneous areas within the image2.

tional expert knowledge (see figure 1.2). It then provides a richer description of the same scene but the
challenge is then to be able to exploit the complementary information carried by different modalities.
The data fusion contest is held annually by IEEE Geoscience and Remote Sensing Society in order to
encourage the development of new methods. The fusion can occur in different processing levels, that
is to say at the raw data level, the feature level and the decision level [Schmitt 2016]. When one aim
at transferring knowledge from one (or several) images to one another, we face a heterogeneous domain
adaptation problem. It is one of the hottest scenario in the community; most of the existing solutions are
devoted to learning a feature mapping function to map both the source and the target into a common
feature space using kernels [Tuia 2016], deep methods [Voreiter 2020] or try to transfer knowledge across
deep architectures [Pires de Lima 2020].

Large volume and scarcity of labels. The dynamic of remote sensing programs leads to abundance
of geospatial image data: as an example, the Sentinel Copernicus program aims at delivering around 4
TeraBytes of data each day in the next few years. Machine learning algorithms have then to accommodate
with the large scale nature of the data. While this amount of data is amenable to deep learning techniques,
the scarcity of labels for (newly collected) data makes the problem trickier to solve. This lack of labeled
is at the origin of the growing interest for semi-supervised learning in the remote sensing community
as it provides a powerful framework for leveraging on unlabeled data [Oliver 2018]. For example, semi-
supervised learning with large convolutional networks is able to leverage large collections of unlabeled
images (up to 1 billion) [Yalniz 2019]. Out of the scope of this manuscript, scalability issues related
with memory and computational requirements can be addressed through the development of dedicated
computing structures, high performance computing and decentralized algorithms. More related to the
scarcity of labels for newly collected data, open-set tasks including few-shot learning, whose aim is to
adapt the classifier to unseen categories based on few labeled samples, have been recently considered in
the remote sensing community [Zhang 2021].

Multi-temporality. Change detection refers to the task of analyzing two (or more) images of the same
scene with the aim to flag changes between the acquisitions. This is an active research area with a broad
range of applications, and many methods have been developped (see [Si Salah 2020] for a categorization
of them). The difficulty in that context mainly depends on the acquisition conditions of the images, with
more challenging scenario when they come from different sensors and are taken with different viewpoints.
When it comes with a series of images (figure 1.3), one approach proceeds by analyzing the evolution of

2The data have been provided by Anne Puissant, LIVE UMR 7362, Strasbourg.
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(a) Sentinel02 (13 bands - colored in RGB) with a
resolution from 10 meters to 60m.

(b) Sentinal01 (SAR image) with a resolution of 10m
or 40m.

(c) MODIS (36 bands - false color) with a resolution
of 250m to 1000m.

(d) LANDSAT 8 (11 bands) with a resolution of 15m
to 30m.

Figure 1.2: Images of the Gulf of Morbihan taken in November 2021 by different sensors at different resolutions.
Images have been collected on https://apps.sentinel-hub.com/eo-browser.

pixels through time [Bagnall 2017]. In the case of satellite image time series classification, the TempCNN
architecture [Pelletier 2019] uses convolutions applied in the temporal domain. In section 4.1, we propose a
continuous time algorithm for dealing with GPS trajectories that are composed of shared sub-trajectories.
Classical CNNs, such as ResNet, have also been adapted for time series [Ismail Fawaz 2019]. One of the
main challenge in this context is when the time distortion that may be unknown or different among classes
(see the related discussion in section 3.3) and when the images come from different domains [Bailly 2017]
(not described in this manuscript).

1.2 Object-Based Image Analysis and hierarchical image representa-
tion in Remote Sensing

1.2.1 Remote sensing hierarchical representations

Remote sensing data processing has long been conducted at pixel level, since times when objects of
interest where way smaller or at most comparable to a pixel’s size. The significant developments on the
spatial resolution front has led to the emergence of object-based image analysis, that no longer handles
every pixel independently, but in contextual groups, thus increasing significantly the involved information
extraction capacity. Since then, it has become possible to analyze image content not only based on its
spectral values, but also on their morphological (e.g. size, shape) and contextual (e.g. adjacency relations
with other objects, neighborhood relations) properties as well. In particular, multiscale models such as
hierarchical representations (or trees) have been proposed and widely acknowledged as the appropriate

https://apps.sentinel-hub.com/eo-browser
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Figure 1.3: Time series of images taken in 2021 of the Gulf of Morhbihan, the city of Vannes being at the top
center of the image. The images have been taken from Sentinel02 satellite. They are multispectral images (13
bands) and are colored only with RGB bands. Images with cloud cover more than 10% have been discarded.
The animation can only be seen some pdf viewers such as Adobe Acrobat reader. Images have been collected on
https://apps.sentinel-hub.com/eo-browser.

solution since they enable modeling efficiently the relations between different image objects at multiple
detail levels, hence the structure present within the image; just for the sake of reference, suffice it to say
that it is currently possible to process tens of millions of pixels within a single spectral band in just a
single second.

Besides their computational and data modeling advantages, hierarchical representations have addi-
tionally paved the way to novel content description approaches. Specifically, attribute filters are capable
of processing entire connected components, and hence enable object-based image analysis. Despite be-
ing long known, it has only been thanks to the advent of efficient hierarchical representations that they
became available as powerful pixel and content descriptors in the form of both attribute profiles and at-
tribute spectra. One other advantage of these representations is that they are most suitable for handling
objects of interest that can manifest themselves at multiple scales. In fact, depending on the required
level of analysis, it is no longer uncommon for image regions to require multiple labels; e.g. a region
might be identified as a road at a fine scale, as a residential area at an intermediate scale, or even as
town or city at a coarse scale. These labels might be known a priori (supervised classification) or not
(unsupervised classification or segmentation).

Providing a complete and integrated framework for multiscale image analysis and learning with hierar-
chical representations of complex remote sensing images is the aim of the ANR research projet Multiscale3

(see figure 1.4).

1.2.2 Some challenges related to learning (with) hierarchical image representations

Learning hierarchical representations. Tree-based approaches are widely used and acclaimed meth-
ods for remote sensing image representations. Yet, so far their application has been mostly limited to
panchromatic optical images, and multivariate images where they are mostly calculated on a per-band

3https://people.irisa.fr/Laetitia.Chapel/multiscale/

https://apps.sentinel-hub.com/eo-browser
https://people.irisa.fr/Laetitia.Chapel/multiscale/
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Figure 1.4: Hierarchical representations constructed from multivariate, multi-source, multi-resolution and multi-
temporal data allow learning at multiple scales. (Left) Sentinel online - ESA; (Middle Left) set of images coming
from possibly different sources, at different resolutions and different time instants; (Middle right) hierarchical
representation built or learnt from this set of data; (Right) learning on the hierarchical representation. Colors
represent here classes or optimal cuts at different and adaptive levels.

basis with just a handful of exceptions; thus without taking into account inter-band information. When
it comes to multi-modal data, tree construction from a temporal set of images has little been considered,
expect in the specific case of SAR images [Alonso González 2014] or in the work of [Tuna 2020] who
adapted tree-based representations to satellite image time series. In addition, even if there exists numer-
ous works about dealing with multi-source data (e.g. [Dechesne 2017]), there exists almost no hierarchical
representation that allows taking into account multi-source data. One can nevertheless cite [Tochon 2015]
who extended hierarchical representations to multi-modal data, by separating however the spectral, spa-
tial and temporal dimensions. On the top of that, data often come with additional information as expert
knowledge, geographical databases or labels, and this information is rarely introduced in the construc-
tion phase of the tree. In [Lefèvre 2014], we aim at integrating some labels within the construction
phase, by encouraging regions with same labels to be aggregated together thanks to metric learning. In
a different context than remote sensing, there has been some recent works dedicated to learning hierar-
chical representations [Nickel 2017], mostly on symbolic data, in some well-suited spaces (i.e. hyperbolic
spaces) for data that exhibit latent hierarchical structure. Adapting those concepts to (multi-modal and
multi-temporal) hierarchical representations is, to my opinion, one of the most promising challenge in the
remote sensing community.

Learning on hierarchical representations. Hierarchical representations constitute rarely an end by
themselves. Instead, they often serve as tools for numerous tasks, especially for image content description
for classification or object recognition. Solutions based specifically on multiscale representations have
been proposed: in [Valero 2011] for instance, a binary partition tree is processed so as to preserve
only the most pertinent levels. The tree representations have been intensively used in order to extract
effective content descriptions with attribute profiles long being the state-of-the-art method [Ghamisi 2014,
Santana Maia 2021]. Despite extensive work, attribute profiles still remain however based on tree-cuts
according to either manually or automatically chosen cut thresholds [Cavallaro 2017]. Deep learning
methods have also been used to take into account the multiscale property, mainly by using pooling
layers [Audebert 2016]. In the same time, in the machine learning community have emerged new tools to
deal with hierarchical representations but they have been exploited quite recently in the remote sensing
community. Classification of structured data like graphs or trees is a well-established field [Niepert 2016],
the hierarchical representation is still often used to extract features rather than performing directly the
classification. In addition, while supervised classification of “flat” labels (i.e. labels with no dependence
between each other) is a marked up research field, hierarchical classification deals with labels organized
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in a hierarchy. This paradigm suits particularly well to multi-scale remote sensing data as it would allow
one to fully take advantage of the inherent hierarchical nature of the representation. Indeed, pixels or
segments can belong to several classes, depending of the considered scale, e.g. from the building scale to
a district and town scale in an urban context. Taking fully advantage of the hierarchical representations
with segmentation and classification at multiple scales (thought a hierarchy of labels) is one challenge
that is still to be solved.

1.3 Part outline and contributions
Chapter classification of remote sensing data with kernels and manifolds first sums up some
of the contribution of the PhD thesis of Yanwei Cui [Cui 2017a]. It addresses some of the challenges
related to multi-modal images at different resolutions thanks to the definition of a dedicated kernel
that allows working directly on hierarchies. Then, I present the use of a manifold learning algorithm
in the context of hyperspectral classification that is particularly efficient for weakly labeled datasets of
images [Chapel 2014].
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In this chapter, we investigate kernel-based strategies that make possible taking as input data with
a tree-structured shape and capturing the topological patterns inside each structure through designing
structured kernels. We apply the designed kernel in a multi-source and multi-resolution remote sensing
image classification context. These works relate to the PhD on Yanwei Cui [Cui 2017a] and have been
independantly published in [Cui 2015, Cui 2016a, Cui 2016b, Cui 2017b]. We also describe a manifold
algorithm for hyperspectral image classification that we show to be very effective and efficient in a
weakly labeled classification context. The results have been published in [Chapel 2014].

2.1 A kernel for learning on hierarchical image representations
Designing a kernel that can learn on hierarchical image representations, several critical aspects have to
be taken into account:

• Unordered tree: we concentrate on kernels that can handle unordered trees (through which hi-
erarchical image representations are often modeled). Such kernels should be able to capture the
hierarchical relationships (i.e. parent-children relation) among the nodes.

• Numerical features: another important property in hierarchical image representations is that each
node represents a region and that attributes of a region, e.g. color or size, are in general numerical
features (at least at the time of the publication). This actually differed from many other domains
where nodes are labeled by a fixed number of symbols.
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• Robustness to structure distortion and noise: hierarchical representations heavily rely on the
adopted construction techniques. These techniques build the tree in an unsupervised way, which
tree structure might vary due to complexity of image contents, presence of the noise, or unde-
sired regions grouped together. Thus, the resulting structures are less strict than the one in other
domains such as chemoinformatics. This should be taken into account when designing the kernel.

• Complexity: the adopted kernel should be efficient and scalable. Unlike other domains, such as
chemoinformatics, or nature language processing, where the data structures are relatively small,
hierarchical representations often have a large number of nodes, and attribute of each node might
be up to thousands of dimension.

To address all the aspects mentioned above, we propose a structured kernel based on the concept of
subpath. It works on vertical hierarchical relationships among nodes in the structured data, with nodes
equipped with numerical features. For its computation, we propose an iterative approach with a quadratic
complexity w.r.t. the size (i.e. number of nodes) of structured data, and a quadratic complexity w.r.t.
number of training samples. It is efficient when dealing with small structure size and limited number of
training samples, and we call it BoSK (for Bag of Subpaths Kernel).

2.1.1 An instance of a convolutional kernel

On of the most standard way to construct valid kernels is to follow the convolution kernel framework
[Haussler 1999]. It states that computing a kernel on a complex structure can be achieved by summing
up kernels on its substructures. Following this framework, a large number of structured kernels have
been proposed under different decompositions [Vishwanathan 2010]. In the case of unordered trees, the
most popular solution is to rely on the concept of subpath [Kimura 2011] that has been identified as an
appropriate substructure to ensure satisfying levels of expressiveness and effectiveness. We decompose
either a tree T or a path P as a set of subpaths, that are paths connecting a node to one of its descendants
(resp. ancestors) in T (resp. P); the set of subpaths also includes individual nodes (see figure 2.1). Let
us denote a subpath by sp = (n(1), n(2) ..., n(p)), sp ∈ G with G a tree or a path of length p. The kernel
between two subpaths sp and s′p is defined as the product of atomic kernels computed on pairs of nodes
k(n(t), n

′
(t)) of the subpaths:

K(sp, s′p) =
p∏
t=1

k(n(t), n
′
(t)) (2.1)

and the definition of BoSK between G and G′ is written as, with µp a weight parameter:

K(G,G′) =
P∑
p=1

µp
∑
sp∈G

∑
s′p∈G′

K(sp, s′p). (2.2)

2.1.2 Efficient computation of BoSK

In the case of the (conventional) Gaussian atomic kernel k(·), K(sp, s′p) can be written as:

K(sp, s′p) =
p∏
t=1

exp(−γ||xn(t)−xn′(t) ||
2) = exp(−γ||xsp−xs′p ||

2) = 〈φ(xsp) , φ(xs′p)〉H ≈ z(xsp)T z(xs′p) ,

(2.3)



2.2. BoSK for multi-source and multi-resolution image classification 19

n1

n2 n3

n4 n5 n1 n2 n3 n4 n5

n1

n2

n1

n3

n3

n4

n3

n5

n1

n3

n4

n1

n3

n5

(a) A tree T and all its subpaths sp.

n4

n3

n2

n1 n1 n2 n3 n4

n2

n1

n3

n2

n4

n3

n3

n2

n1

n4

n3

n2

n4

n3

n2

n1

(b) A path P and all its subpaths sp.

Figure 2.1: Examples of structured data that can be extracted from hierarchical image representations, a tree T ,
a path P and their subpaths.

where xsp = [xTn(1)
,xTn(2)

, · · · ,xTn(p)
]T ∈ Rpd is the numerical feature of subpath sp, being the concatena-

tion the features of the nodes and z(xsp) is the Random Fourier Feature approximation of dimension D.
By using the explicit mapping function for the Gaussian kernel, BoSK can be rewritten as follows:

K(G,G′) =
P∑
p=1

∑
sp∈G

∑
s′p∈G′

〈φ(xsp), φ(xs′p)〉H =
P∑
p=1
〈
∑
sp∈G

φ(xsp),
∑
s′p∈G′

φ(xs′p)〉H = τ(s)T τ(s′) , (2.4)

where the set of vectors encoded into the feature space for each subpath sp are aggregated inside a
single vector τ(s) = [

∑
s1∈G z(xs1)T , · · · ,

∑
sP∈G z(xsP )T ]T . The proposed approximation, SBoSK yields

a linear complexity of O(n|G|dD), while the exact computation maintains a quadratic complexity of
O(n2|G|d).

2.2 BoSK for multi-source and multi-resolution image classification
To perform image classification from a hierarchical representation, we propose to combine BoSK computed
on paths P and trees T respectively.

2.2.1 BoSK on path for multiscale contextual information

In pixel-wise classification, each pixel is represented by its spectral information, for instance r-g-b color
information, or hyperspectral information in the hyperspectral remote sensing imagery. The spectral
feature can be written as a d-dimensional vector and fed directly into a classifier. In such way, each
pixel is treated independently, thus the spatial relationships among them are not preserved. However,
spatially closed pixels often share similar spectral information and are more likely to belong to the same
class. Without taking this image domain specification into account in the classification scheme, the
resulting classification maps are often noisy and suffer from the “salt-and-pepper” effect. The hierarchy
from a pixel to the whole image can be modeled by a path structure, where the nodes encode the feature
of the regions and the edges model the hierarchical relationships among them. SBoSK applied on path
structure allows explicitly taking into account the hierarchical relationships among ancestral regions from
different scales, providing a powerful tools for multiscale context-based pixel-wise image classification. As
illustrated in figure. 2.2, through the hierarchy, the ancestral regions encode the evolution of pixel from
finer to coarser level, thus contextual information can be revealed.

2.2.2 BoSK on object spatial decomposition

A paradigm for tile image classification advocates the idea of relying on hierarchical representations, which
are built using series of nested partitions or segmentations, rather than on the usual flat representation.
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Figure 2.2: Contextual information extracted from hierarchical image representation. Each pixel (leaf of hier-
archical representation) is considered as data instance to be classified, and described by features on the set of
ancestral regions on the path P linking it to the root.

Regions at different scales are generated using multiscale segmentation tools and represented through a
tree structure, where the root node represents the whole image and the leaves stand for the finest scale of
segmentation. Regions are the nodes of the tree described by a set of features as the nodes attributes, and
the relationships among regions are modeled through the edges. The hierarchical image representations
can be constructed either by iteratively segmenting the image in 4 regions at successive scales (quad-tree
representation as in figure 2.4a), or by multiscale segmentation algorithms (as shown in figure 2.3 and
figure 2.4b).

(a) level 0 (b) level 1 (c) level 2 (d) level 3 (e) level 4

Figure 2.3: Illustration of a multiscale image segmentation from level 0 (whole image) to level 4 (the image is
taken for the Merced dataset).

2.2.3 BoSK for multi-source image classification

We present here a novel multi-source and multi-resolution classification approach relying on BoSK and
operating on a hierarchical image representation built from two images at different resolutions, possibly
with different modalities. Both images capture the same scene with different sensors and are joined
together through the hierarchical representation, where, for instance, coarser levels are built from a Low
Spatial Resolution (LSR) or Medium Spatial Resolution (MSR) image while finer levels are generated
from a High Spatial Resolution (HSR) or Very High Spatial Resolution (VHSR) image.

We combine BoSK computed on path P and trees T respectively. The final kernel between two data
instances K(G,G′) is computed using a linear combination of the two BoSK:

K(G,G′) = ρ×K(P,P ′) + (1− ρ)×K(T , T ′)

= ρ× τ(s ∈ P)T τ(s′ ∈ P ′) + (1− ρ)× τ(s ∈ T )T τ(s′ ∈ T ′)

=
[√

ρ× τ(s ∈ P)T ,
√

1− ρ× τ(s ∈ T )T
]T [√

ρ× τ(s′ ∈ P ′)T ,
√

1− ρ× τ(s′ ∈ T ′)T
]
,

(2.5)
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Figure 2.4: Illustration of a quad-tree representation and an arbitrary hierarchical representation.

where K(P,P ′) is BoSK on paths, and K(T , T ′) is BoSK on trees, τ(s ∈ P) and τ(s ∈ T ) are RFF
embedding of P and T respectively, with a parameter ρ ∈ [0, 1] that controls the importance ratio
between the two kernels. Such embedding allows computing the fused kernel through inner product of
concatenated feature vectors. It computes each data instance independently, yielding a linear complexity
w.r.t. training sample size and maintaining the scalability of the proposed classification approach.

We evaluate the proposed approach focusing on urban land-use classification in the South of Strasbourg
city, France. Two images are considered, both capturing the same geographical area with different sources:
i) a MSR image captured by a Spot-4 sensor, containing 326 × 135 pixels at a 20 m spatial resolution,
described by 4 spectral bands; ii) a VHSR image, captured by a Pleiades satellite, containing 13040×5400
pixels at a 0.5 m spatial resolution described by 4 different spectral bands. The classification results show
that combining contextual and decomposition information leads to a significant improvement. Indeed we
observe, for various training sample sizes, more than 4% improvement over BoSK on a single MSR image,
and more than 10% improvement over BoSK on a single VHSR image. We can see in figure 2.5 that the
prediction achieves a spatial regularization for the large regions, while providing precision for the small
structures such as road networks.

2.3 A manifold learning algorithm for weakly labelled hyperspectral
image classification

We now turn into describing the problem of leaning on high dimensional data when only few labeled
pixels are available.

Although hyperspectral data live in a high dimensional space, the spectral correlation between bands
is high and it is very unlikely that they occupy the whole space in an anisotropic manner: a manifold as-
sumption then makes sense. Manifold learning algorithms assume that the original high dimensional data
actually lie on an embedded lower dimensional manifold. Another path of interest to improve the classifi-
cation performances is to focus on generative algorithms, that naturally entail a description of each class.
Of course, a cornerstone of the statistical learning theory is that learning a boundary between classes (as
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(a) single MSR (b) BoSK MSR

(c) single VHSR (d) BoSK VHSR

(e) Ground truth image (f) Combined

Figure 2.5: Classification maps for methods using single and multiple levels of a hierarchical image representation.
Scenario 1: single level on Spot-4 image (a) vs. multiple levels contextual information on Spot-4 image (b);
scenario 2: single level on Pleiades image (c) vs. multiple levels spatial decomposition information on Pleiades
image (d); scenario 3: combination of contextual and spatial decomposition information (f). Ground truth image
(e) is also given as reference.
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it is done with discriminative classifiers) is a simpler problem than training a model for each of them.
However, from a theoretical point of view, generative learning is often more efficient than discriminative
learning when the number of features is large compared to the number of training samples [Ng 2001] while
discriminative models are often better asymptotically. In the context of hyperspectral image classification,
generative classifiers are thus particularly interesting since, as pointed out in [Bioucas-Dias 2013], “super-
vised classification faces challenges related with the unbalance between high dimensionality and limited
availability of training samples”. We focus on the PerTurbo algorithm [Courty 2011] for hyperspectral
image classification.

2.3.1 Manifold class description and classification algorithm

Algorithm. The idea behind PerTurbo is to build the predictive function in an implicit manner, within
two steps. In the first step, the geometry of the set of training examples for each class ` is characterised.
Then, a similarity metric adapted to these sets of geometric models is derived, so that the predictive
function reads as the minimum distance of a test sample η to those models.

Let us denote S` the set of all the N` training examples with label `. We assume that each set S`
is embedded into a dedicated Riemannian manifold M`, whose geometric structure can be expressed
in terms of the Laplace-Beltrami operator. This operator can be efficiently approximated by the heat
kernel (modeling the propagation of a variation of temperature along a manifold), this latter being in
turn approximated by the spectrum of the Gaussian kernel K(S`), the Gram matrix of the training
set S`, whose (ith, jth) term is given by Kij(S`) = k(xi,xj) = φ(xi)> · φ(xj). When a test sample
η is considered, a similarity measure between a class and η can be derived from the extent to which
its inclusion to the class changes the geometric characterisation of the associated manifold M`. More
formally, the projection of sample η onto the subspace spanned by φ(S`) is given by:

r(η →M`) = K(S`)−1/2k(S`, η). (2.6)

The perturbation measure of class ` by a sample then reads:

τ(η,M`) = ‖φ(η)‖2 − ‖r(η →M`)‖2 = 1− k(S`, η)>K(S`)−1k(S`, η). (2.7)

Test sample is then classified into the class that provides the smallest perturbation, i.e. arg min` τ(η,M`).

Interpretability of the model: similarity between classes The geometric characterisation of each
class by the kernel matrix K(S`) carries extra information that can be used to describe classes, allowing
for example measuring the separability of the different classes. The projection of sample on a manifold
can be generalised in order to project all the samples S`1 of a given class `1 into the subspace spanned by
φ(S`2): r(S`1 →M`2) = K(S`1)−1/2k(S`2 ,S`1). Hence, the Gram matrix associated to this projection is

K(S`1 →M`2) = r(S`1 →M`2)> · r(S`1 →M`2) = K(S`2 ,S`1)>K(S`2)−1K(S`2 ,S`1). (2.8)

K(S`1 →M`2) is a surrogate kernel of K(S`1): both kernels are constructed on the same set of eigenvec-
tors and eigenvalues, but they are evaluated on different sets. As such, classes with similar geometry will
have “similar” kernel matrices while those with manifolds lying in different spaces will have “different”
kernel matrices. The degree of agreement between two matrices can be evaluated thanks to the empirical
alignment of the kernel matrix K(S`1 →M`2) with the kernel matrix K(S`1) with respect to the sample
S`1 :

A(S`1 ,K(S`1 →M`2),K(S`1)) =
〈K(S`1 →M`2),K(S`1)〉F√

〈K(S`1 →M`2),K(S`1 →M`2)〉F 〈K(S`1),K(S`1)〉F
(2.9)
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where 〈C,D〉F stands for the inner product between matrices C and D.

2.3.2 Behavior on low-sized training sets

When comparing the performances of the algorithms on several hyperspectral datasets (Indian Pines,
Pavia University, Pavia Center, Washington DC Mall), we observe that it provides significantly better
accuracy rates than SVM when the number of training samples is low, while being faster to compute.
Calculating the similarity matrix between each class and its surrogates gives a table layout; a function
of the obtained values, as well as a function of the intensity of the values of the confusion matrix, are
represented in figure 2.6. One can notice the structural similarity of the two matrices, confirming the
idea that an a priori on the classification results can be obtained from the computation of the similarity
matrix.
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Figure 2.6: Measures of separability of the different classes of the Indian Pines dataset. Cells represent, in Figure
(a) a function of the measure of similarity A(S`1 ,K(S`1 → M`2 ),K(S`1 )) between the classes; in figure (c), a
function of the percentage of pixels of class in column that have been classified as the class in row. The function
used is the rank; colour intensity in Figure (b) represents the rank of each cell: the most similar pairs of classes
and those with highest error rates being coloured in dark red (cells with the lowest ranks are not coloured and
diagonal cells are coloured in grey in both cases).
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Time series are ubiquitous and their analysis or learning requires the use of dedicated methods, able to
take into account the additional temporal dimension of the data. There has been much effort devoted to
the field in the two last decades, the key being to be able to either design effective dissimilarity measures
that can take time series as input or designing algorithms that rely on a suitable representation of the
data. In this chapter, I give a brief overview of the classical methods for machine learning for time series
on which our works on the topic rely on. Some related challenges are then described at the end of the
chapter.

Time series are sequences of features x = (x0,x1, · · · ,xn−1) with associated time stamps
(t0, t1, · · · , tn−1) that lie in a p-dimensional space. When p = 1, times series are said univariate, otherwise
multivariate. The temporal dimension can be included in different manners: i) only the ordering of the
observations matters (as in the DTW similarity for instance) ii) the time stamps are taken into account.
Some approaches like the convolutional ones suppose that the time is regularly spaced while some others
allow dealing with irregularly sampled time series.

3.1 Dissimilarity measures for time series

3.1.1 DTW and its variants

DTW. The state-of-the-art algorithm for assessing dissimilarity between time series is without a doubt
Dynamic Time Warping (DTW, [Sakoe 1978]), whose extensions to multivariate time series have been
proposed in [Ten Holt 2007]. DTW takes into account temporal shifts and distortions, but can be sensitive
to noise or outliers (as all the time instants are taken into account) and does not take explicitly the time
into account (which may be a drawback in some applications).
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In its standard form, given two time series x and y of the same dimensionality p, DTW is defined as:

DTW(x,y) = min
π∈Π(x,y)

∑
(i,j)∈π

d(xi,yj) = min
π∈Π(x,y)

〈C(x,y), π〉 (3.1)

where the entry Ci,j = (d(xi,yj))i,j of C(x,y) represents the distance between xi and yj , where d is
the ground cost (in most cases, the squared Euclidean distance d(xi,yj) = ‖xi − yj‖2). An alignment π
is a sequence of pairs of time frames which is considered to be admissible iff it belongs to the following
set of constraints:

Π(x,y) = {π ∈ Rn×m+ |π(0, 0) = 1, π(n,m) = 1,

for each π(i, j) = 1, we have either π(i+ 1, j) = 1 or π(i, j + 1) = 1 or π(i+ 1, j + 1) = 1} .
(3.2)

As such, it defines a connected path between the beginning and the end of the time series (figure 3.1).
Efficient computation of the above-defined similarity measure can be performed in quadratic time using
dynamic programming thanks to a recurrence formula.

Many variants of this similarity measure have been introduced. For example, the set of admissi-
ble alignment paths can be restricted to those lying around the diagonal using the so-called Itakura
parallelogram or Sakoe-Chiba band, or a maximum path length can be enforced [Zhang 2017].

softDTW. A differentiable variant of DTW, coined softDTW, has been introduced in [Cuturi 2017]
and is based on previous works on alignment kernels [Cuturi 2007]. It replaces the min operation in
Equation (3.1) by a soft-min operator minγ whose smoothness is controlled by a parameter γ > 0,
resulting in the DTWγ distance:

DTWγ(x,y) = min
π∈Π(x,y)

γ
∑

(i,j)∈π

d(xi,yj) = −γ log

 ∑
π∈Π(x,y)

e
−
∑

(i,j)∈π
d(xi,yj)/γ

 . (3.3)

In the limit case γ = 0, minγ reduces to a hard min operator and DTWγ is defined as equivalent to the
DTW algorithm.

Global alignment kernel. Instead of considering the minimum over the set of possible alignments in
eq. (3.1), [Cuturi 2007] argue that integrating over the whole set of alignments provides a richer statistic,
and propose the global alignment kernel as the exponentiated soft-minimum of all alignment distances:

kGA(x,y) =
∑

π∈Π(x,y)

exp−〈C(x,y),π〉 . (3.4)

They show that the computational effort to compute kGA is O(nm), similar to DTW, and [Cuturi 2011]
also proposes variants of the kernel by considering a smaller subset of admissible alignments.

Gromov-DTW. When it comes to heterogeneous time series, [Cohen 2021] define GDTW that extends
the Gromov-Wasserstein distance (eq. (6.8) in section 6) to time series:

GDTW(x,y) = min
π∈Π(n,m)

∑
i,j,k,l

L(dX(xi,xk), dY (yj ,yl))πi,jπk,l (3.5)

in which L is a loss function that measures the alignment of the pairwise distances and the constraint
set Π(x,y) is the set of all the admissible DTW alignment matrices (eq. (3.2)). They provide an
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“approximate” Frank-Wolfe algorithm [Frank 1956] with a fixed step size to solve the problem rather
than optimizing it (see Section 7.1.2 for a description of the Frank-Wolfe algorithm), ensuring that, at
each iteration of the algorithm, the solution is an alignment matrix. The price to pay of this approximation
is that there is no proof of convergence of the algorithm. Authors claim that the algorithm works well
in practice, but in [Vayer 2020b], we show that it may have difficulties to reach a global optimum (see
also figure 5.4 in section 5.2), which may come from this approximation. Together with the authors
of [Vayer 2020b], we conjecture that projecting within the set of admissible alignment matrices at the end
of the Frank-Wolfe algorithm rather than at each iteration may be a better alternative as, in practice,
we observe that few optimal steps differ from the fixed one, and that the final solution would be “not
far away” from a true alignment matrix. It would have the advantage of ensuring the convergence of the
algorithm, which is not the case for [Cohen 2021]. We did not investigate further the impacts of this
alternative solution though.

3.1.2 Other dissimilarity measures

There exist many dissimilarity measures for time series, whose use depends on the context at stake.
For example, the set of Lp distances can be used when the time series are registered with no temporal
distortion. Dedicated measures such as temporal instances of edit distances have also been instantiated,
e.g. the basic idea of the Longest Common SubSequences (LCSS) problem is to find the longest common
subsequence between two sequences, in which some elements can be unmatched or left out.

FGW distance on time series. The fused Gromov-Wasserstein distance defined in section 7.1 can
be used for time series (see an example in figure 7.5). In that case, they are viewed as special instances
of non-directed graphs rather than directed ones (see figure 1). As a consequence, the knowledge of
the beginning and the end of the time series is lost, introducing a non-desirable invariance. Figure 3.1
presents one example of such behavior on a toy example: while the two time series are different, FGW is
unable to distinguish them.

t
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y0
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y5y0
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x0

x5
y5y0

DTW path π

Figure 3.1: The isomorphism property is not sought when dealing with time series: the two time series have a
FGW distance of 0. The DTW alignement produces a path from (x0,y0) to (x5,y5).

3.2 Embedding time series
There exists a wide number of algorithms that aim at embedding time series in a common Euclidean space
that captures the main features of the data and in which they can be easily compared. The objective is
to find a latent space that best captures the main features of the data or that allows the best solution of
the learning task at stake. From the historical Fourier and wavelet transformations, the most prominent
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families of methods that are developed nowadays are based on deep learning techniques: a query on
Google scholar for “Time series” + “deep learning” for the last 5 years returns almost 100 000 results.
In this section, I review some of the solutions in which our works place themselves into.

DTW-based Embedding of time series in a common latent space. Canonical Time Warping
(CTW) [Zhou 2009] aims at aligning two sequences in a common latent space (of reduced dimensionality).
It combines Canonical Correlation Analysis with DTW for temporal alignment, allows for local spatial
deformations and can handle heterogeneous times series (i.e. with different modalities or dimensions).
When a non-linear projection is sought, its extension Deep CTW [Trigeorgis 2016] relies on deep archi-
tectures to transform the sequences. [Deng 2020] define an invariant subspace in which the DTW distance
between samples and their reconstruction is minimized.

Codebook-based representations. The bag-of-words (BoW) model consists in representing an in-
stance using a histogram of word occurrences. Albeit the temporal order is lost, it is able to capture
structural information by defining both local and global characteristics. The quantization that is involved
might lead to information loss, nonetheless, it also allows robustness to noise. Many codebook-based rep-
resentations use k-means to select k-codewords. The selected codewords correspond to cluster centers,
and each local feature is assigned to the nearest cluster center. From the Bag-of-Patterns to Bag-of-SFA-
Symbols, there exist many implementations of the BoW model for representing time series; a review in the
context of time series classification can be found in [Bagnall 2017]. In [Bailly 2015b] and [Bailly 2015a], we
propose a representation based on SIFT-words for time series, together with an application on a remote
sensing context [Bailly 2016]. SIFT features are straightforward 1D adaptations of the Scale-Invariant
Feature Transform (SIFT [Lowe 1999]) framework introduced in Computer Vision. Section 4.2 gives more
details about the algorithm and its performances.

Shapelet-based representations. Shapelets are discriminative time series subsequences (of length
L < n). The original time series are then described as a vector of distances between each of the shapelet
and the optimal match localization:

d(x, sk) = min
j=1,··· ,J

L∑
`=1

(xj+`−1 − sk,`)2

in which sk is the kth. Shapelets-based methods also provide interpretability of the results since it is
possible to extract the most discriminative shapelet(s). [Grabocka 2014] propose to learn the shapelets
instead of searching for the best of them. In [Bailly 2018], we propose an enhancement of the learning
time series shapelets (LTS) algorithm based on the insertion of adversarial time series in the training
procedure. Basically, we show that LTS is a special case of CNN for 1d data and we propose to introduce
an adversarial regularization to improve the learning. Empirical evaluation on the UCR dataset shows
that it improves the overall classification accuracy when compared to the LTS algorithm alone.

Dynamic topic models. When it comes to discovering specific patterns in time series, topic models
are state-of-the-art techniques. They are mixture models originally designed for discovering topics into
text documents. Those documents are then represented as bag of features and the topics are then a
distribution over features. They have been extensively studied in the text mining community: intuitively,
given the occurrence of some words, one can defined topics as clusters of similar words. The patterns
of words are estimated through hierarchical probabilistic models and a dynamic version, that captures
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the evolution of topics in a sequentially organized corpus of documents, has been defined in [Blei 2006].
In another line, [Wang 2006] propose a LDA-style topic model that captures how the structure changes
over time. Efficient approximate posterior inference techniques for determining the evolving topics are
usually used to estimate the mixture components and proportions. For these methods, time series are
hence seen as bags of timestamped features.

3.3 Some challenges for machine learning for time series
Domain adaptation and/or heterogeneous setting. Learning under distribution shift is one
paradigm of major interest in the machine learning literature. Indeed, the training and the test data are
often subject to collection bias or can be collected under heterogeneous conditions, because of different
times of measurement, contexts or even measurement modalities (e.g. when different sensors are used to
measure related quantities). This first challenge questions our ability to transfer knowledge across dif-
ferent domains; the problematic of domain adaptation or transfer learning is even more significant when
dealing with time series as temporal shifts can be encountered in addition to the feature distribution
shift. As an example, let us consider the automatic land use and land cover classification from time series
of satellite images problem, which is of paramount relevance to assess vegetation and crop status. The
bio-geo-physical variables exhibit distinct temporal structures due to the difference in the geographical
area of collection, the modality of the measurements, the time of collection etc. The lack of annotated
data (due to the high cost and human resources needed to characterize and classify land cover through
field campaigns) makes the problem of combining the knowledge from heterogeneous data even more
significant. In that context, we propose in [Bailly 2017] to use a kernel manifold alignment [Tuia 2016]
method for domain adaptation of remote sensing time series, allowing one to realign the time series in
the same domain in which a classification is then performed.

When it comes to domain adaptation for time series that live in the same space, existing methods
mainly rely on domain adversarial neural networks, such as [Wilson 2020, Liu 2021] to name a few.
When they live on different spaces, most methods rely on DTW, flagship examples being Canonical Time
Warping [Zhou 2009] or Gromov-DTW [Cohen 2021].

Learning the importance of the time within the algorithms. Learning on time series may take
very diverse forms, depending on the algorithms that are implied. Their choice depends on the invariants
and the nature of the data at stake. Real world time series data are easily affected by complex temporal
transformations, that may differ from one domain or class to another. As an example, when dealing
with remote sensing time series, some classes may be affected by long-term changes (e.g. those related to
urbanization) or cyclic changes (e.g. agriculture classes); some of them may also be temporally distorted,
e.g. with a shift harvest/collect from one parcel to another or different maturation speed. A great deal of
effort has been put into studying how to align the time series data, but less into studying which a priori
should be put onto the analysis. The main option at this moment is the use of ensemble techniques that
combine output from base models [Lines 2018, Ismail Fawaz 2019]. Designing methods able to learn the
type of invariance or the distortion present in the data is then of prime importance.

From infrequent measurements to continuous monitoring. From infrequent and parsimonious
measurements of signals (as represented in the UCR archive [Chen 2015] that contains 85 datasets of
univariate time series of average length of 460 time stamps equally spaced in time, an average training
set size of 530 series), rapid advances in technologies are generating a rapid growth both in the size,
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but also in the complexity of the time series data. Introducing or relying on continuous time models
is then of paramount importance: even if the time series are discrete, the underlying process is often
continuous and leads to unequally spaced measurements. It has been shown that we should be very
careful when interpreting results obtained with a discrete-time model when analyzing continuous processes
[Loossens 2021]. It also necessitates the development of scalable algorithms able to deal with the related
amount of data. The recent success of the ordinary differential equations (ODE) in various networks
[Chen 2018] is a flagship example of this trend. It has led to the definition of continuous-depth models
able to handle irregularly-sampled time series data. Among related works, we can cite [Rubanova 2019]
who show that ODE-based models outperform their RNN-based counterparts on irregularly-sampled
data; in the case of partially-observed irregularly-sampled multivariate time series, [Kidger 2020] propose
Neural Controlled Differential Equations. Nevertheless, during the internship of François Painblanc
[Painblanc 2019], we found out that neural-ODE were costly to train and prone to overfitting. In another
line of research, the goal of continuous time modeling approaches is to formalize the laws that govern
the evolution of the observed processes into a mathematical framework. Continuous-time models, like
the Ornstein–Uhlenbeck model [Uhlenbeck 1930] (that can be seen as continuous autoregressive model),
rely on differential equations and describe a system that is evolving through time. The aim is then to
approximate the parameters of the underlying process that fit the most to the observed data. While the
treatment of discrete-time model is well established in the community, less attention has been paid to
the continuous-time ones and that, to my opinion, is one of the challenges when dealing with time series.
Leaning toward this aim, and for the sake of efficiency, we have proposed in [Gloaguen 2021] a 2-step
scheme to cluster trajectories i) non-temporal pre-clustering of the data ii) in a refinement step, model
of the series segments using a continuous-time model (see section 4.1).

3.4 Part outline and contributions
Here is a short description of the 2 following chapters of the manuscript that give my main contributions
in the field of learning for time series.

Chapter New representations for time series deals with building new embedding schemes for
learning on time series. We first propose a clustering algorithm that relies on Ornstein–Uhlenbeck pro-
cesses to take into account the continuous nature of trajectories. We next describe our work for designing
a new time series representation based on temporal SIFT descriptors, allowing taking into account the
local structure present in the data.

Chapter Building sensible metrics for time series provides new algorithms for comparing time
series. The first one defines a time-sensitive local kernel between time series that is able to take into
account irregularly sampled time series. A second contribution specifically deals with the case of time
series that are incomparable, that is to say that are described by unregistered or different features. The
proposed framework combines a latent global transformation of the feature space with the widely used
Dynamic Time Warping (DTW). The latent global transformation captures the feature invariance while
the DTW deals with the temporal shifts.
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In this section, I sum up some works that aim at defining new sensible representations for time series.
The first work [Gloaguen 2021] has been performed during the post-doc of Pierre Gloaguen and defines a
generic framework for the clustering of large trajectory data sets. A trajectory is described by both the
successive positions and velocities. Each trajectory is seen as a succession of movement modes in which an
Ornstein Uhlenbeck process is used to model the velocity. A cluster of trajectories is then characterized
by its distribution over movement modes. This framework is then specified in continuous time and space,
which makes its formulation insensitive to GPS sampling, relaxing assumptions of previous models of the
literature that are based on space quantization It relies on a global latent representation of the feature
space in which the time series can be compared. I then described the Bag-of-Temporal-SIFT-Words
method that has been defined during the PhD of Adeline Bailly [Bailly 2018]. The method extracts
SIFT-based keypoints [Lowe 1999], then describes those keypoints through gradient magnitude and then
represents the time series as a bag of words of the quantized version of the keypoints. In that case,
and contrary to the first method, the temporal consistency all along the time series is lost but it allows
one to handle temporal shifts. In section 5.1, a solution is proposed to take into account the temporal
dimension.

4.1 Inference for Sequences of Ornstein Uhlenbeck Processes for
time series clustering

We propose in [Gloaguen 2021] a new modelling framework to cluster sequences of a large amount of
trajectories recorded at potentially irregular frequencies. The model is specified within a continuous time
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framework, being robust to irregular sampling in records and accounts for possible heterogeneous move-
ment patterns within a single trajectory. It partitions a trajectory into sub-trajectories, or movement
modes, allowing a clustering of both individuals’ movement patterns and trajectories. The modelling
framework aims to account for two levels of heterogeneity possibly present in trajectory data: i) hetero-
geneity of an individual’s movement within a single trajectory, and ii) heterogeneity between observed
trajectories of several individuals. Time series are then represented as successive Ornstein Uhlenbeck
Processes. The following three problems must be solved: i) characterizing different movement modes
present in the dataset; ii) for each observation, estimating in which movement modes it belongs; iii)
clustering together trajectories that have the same distribution over movement modes. We first start by
defining a parametric framework to model trajectory data.

4.1.1 Continuous time model for the movement modes

A movement mode is assumed to be characterized by a specific correlated velocity model, defined in
a continuous-time framework. Formally, during a time segment [τ1; τ2], if an individual adopts the
movement mode k, then its velocity process (Vt)τ1≤t≤τ2 is assumed to be the solution of the following
Stochastic Differential Equation (SDE):

Vt = −Γk (Vt − µk) t+ ΣkWt, τ1 ≤ t ≤ τ2 and Vτ1 = vτ1 (4.1)

where µk ∈ R2 is the asymptotic mean velocity of the k-th movement mode; Γk is an autocorrelation
parameter, Σk is a diffusion term, Wt is a standard Brownian motion. The solution to eq. (4.1) is a well
known continuous time stochastic process, the Ornstein Uhlenbeck Process (OUP) [Uhlenbeck 1930] (see
figure 4.1). The resulting process (Xt)τ1≤t≤τ2 is known as an Integrated Ornstein Ulhenbeck Process
(IOUP), which remains a Gaussian Process.

w π T Global variables

Fj

Zj
iLocal variables V j

i

Cluster level

Observations

Trajectory level

Figure 4.1: (Left) Five realizations of bivariate Ornstein Ulhenbeck Processes starting at position v0 = (0, 0)
(top right corner) (Right) Graphical representation of the hierarchical structure of the model, in which (global
variables) w represents the trajectory cluster weights, π is the set of all unknown movement modes weights, T
represents the set of unknown movement parameters, (local variables) Fj is the cluster of the jth trajectory,
Zj

i = k if the velocity belongs to the kth movement mode.

4.1.2 A 2-step clustering approach

In order to perform scalable parameter inference and clustering of both trajectories and GPS observations
(into movement modes), we adopt a pragmatic two-step approach that takes advantage of the inherent
properties of the OUP and are briefly described hereafter.
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Step-1. A first dual clustering is performed based on a simpler independent Gaussian mixture model,
in order to estimate potential movement modes and trajectory clusters: it allows getting rid of within
mode autocorrelation in the inference, and therefore eases the computations. The Gaussian hypothesis in
this case is rather natural, as the OUP stationary distribution is Gaussian. For this first step, we define
a hierarchical model and perform a Bayesian estimation of the parameters using stochastic variational
inference, making the algorithm scalable (unlike traditional Gibbs sampling procedures). Figure 4.1
(right) gives the associated graphical model.

Step-2. Among the estimated movement modes, only those meeting a temporal consistency constraint
are kept. Parameters of these consistent movement modes are then estimated and used to reassign
observations that were assigned to inconsistent movement modes. It ensures that only trajectory segments
for which this stationary distribution was reached are kept to estimate movement modes.

4.1.3 Experiments on GPS trajectories

Experiments on simulated data. A data set of 40 trajectories containing overall 8 000 observations is
simulated, according to a model with 2 trajectory clusters, the two clusters being composed of respectively
2 and 3 movement modes. Simulated data are shown in figure 4.2 (left). However, two extra movement
modes are estimated, corresponding to the transition phases towards the light blue movement mode
and leaving from it (figure 4.2 (Step 1)). Including the second step, movement modes for inconsistent
sequences are re-estimated (figure 4.2 (Step 2)). The trajectory cluster assignation is 100% right.

Figure 4.2: (Left) Three movement modes are shared by two clusters and the first two movement modes are
present in both clusters. (Right) Estimated movement modes (in the bivariate velocity space) after one and two
steps. The ground truth is shown on the right.

Experiments on maritime traffic data. The dataset records 6 months of AIS data of vessels steaming
in the area of the Ushant traffic separation scheme (in Brittany, West of France). This is an area with
one of the highest maritime traffic density in the world, with a clear separation scheme of two navigation
lanes. Different kinds of vessels are sailing in the area, from cargos and tankers with high velocity and
straight routes to sailboats or fishing vessels with lower speed and different sailing directions. As such,
the area is highly monitored to avoid collision or grounding, and a better analysis and understanding
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of the different ship behaviors is of prime importance. The whole trajectory dataset is shown on Fig.
4.3 and we made it online1. It consists in 18,603 trajectories, gathering at all more than 7 million GPS
observations. As no ground truth is available, we cannot determine which solution
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Figure 4.3: (Left) Whole trajectory dataset (Middle left) Mean and covariance of the 81 estimated movement
modes (Right) Typical trajectories from two estimated clusters. In the first part of the trajectories starting at
the South, clusters are differentiated by the movement mode. Then, all trajectories follow the same route.

fits better but we note by a visual inspection of the clusters that the competitor clustering fails at
differentiating ships that follow the same traffic lane (i.e. identifying sub-routes in the main traffic lanes).
One should also note that, by assigning movement modes to the observations, our method provides extra
explanation for cluster assignments, compared to k-means that solely relies on inertia minimization.

4.2 Time series classification based on local features representation

4.2.1 Bag-of-Temporal-SIFT-Words

Bag-of-Temporal-SIFT-Words (BoTSW) is a method that aims at providing a new representation of time
series that relies on SIFT features. Those features have been shown to be efficient in the computer vision
community thanks to their ability to describe local behavior of images.

Method. In a nutshell, the algorithm combines the extraction of descriptive features at regular time
steps in the time series with a histogram representation. The raw time series are transformed into
a new representation that gathers the different descriptive characteristics into similarity groups, the
new representation is then fed into a classifier. It is based on the Scale-Invariant Feature Transform
(SIFT [Lowe 1999]) method that has been originally introduced in the computer vision community, and
has several useful properties such as scale and location invariance. We have proposed two variants of
the method: the Bag-of-Temporal-SIFT-Words [Bailly 2015b] and its dense counterpart (D-BoTSW)
[Bailly 2015a], which is sum up here.

The dense Bag-of-Temporal-SIFT-Words (D-BoTSW) algorithm can be divided into the following
steps. First, we extract keypoints inside time series, i.e. we extract a list of points at regular time step
that serve as bases for our future descriptors. Then, we describe these keypoints using 1D-SIFT features:
these features use neighboring points in order to describe the neighborhood of each keypoints and to detect
characteristics such as peaks or valleys inside time series. Once those descriptors are defined, a codebook
is generated, i.e. similar features are gathered together in order to simplify the representation. To do
so, we transform each time series into a new representation corresponding to a normalized histogram of

1https://github.com/rtavenar/ushant_ais

https://github.com/rtavenar/ushant_ais
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words occurrences, which allow us to easily compare two time series. Finally, we perform the classification
on the new representation (here a linear SVM is used). The proposed algorithm is robust to both noise
and temporal shifts and is described in figure 4.4.
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(a) Dense extraction (⌧step = 15, 9 scales) (b) k-means generated codebook (k = 6)
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Figure 2.6 – (D-)BoTSW Approach Overview: (a) A time series and its dense-extracted keypoints. (b) Codewords obtained
via k-means, the color is associated with the dots under each keypoint in (a). (c) Keypoint description is based on the time
series filtered at the scale at which the keypoint is extracted. Descriptors are quantized into words. (d) Histograms of word
occurrences are given to a classifier (linear SVM) that learns boundaries between classes.

Figure 4.4: Bag-of-Temporal-SIFT-Words approach overview: (a) a time series and its dense (regular) extracted
keypoints; (b) Codewords obtained using a k-means, the color is associated with the dots under each keypoin in
(a); (c) Keypoint description is based on the time series filtered at the scale at which the keypoint is extracted,
descriptors are quantized into words; (d) Histograms of word occurrences that can feed a classifier.

Pros and Cons of the method. D-BoTSW has many advantages such as its robustness to noise and
its ability to handle temporal shifts. Nevertheless, the BoW representation causes information loss during
the quantization step. It also ignores the temporal order of words. When the ordering of event matters,
one can couple the D-BoTSW features to a dedicated classification algorithm such as [Tavenard 2017] (see
section 5.1). The most computationally demanding step of D-BoTSW is the k-means learning process
and the fitting of the classifier. The dense extraction, features description and transformation to BoW
representation can be done efficiently: D-BoTSW is thus able to fastly classify new data.

4.2.2 Experiments on a remote sensing scenario

On the UCR archive. We compare the performances of D-BoTSW with the ones of several state-of-
the-art time series classifiers on the datasets of the UCR archive. We show that it leads to better or same
performances than all the competitors but one (which is an ensemble-based classifier). Figure 4.5 shows
the performances of the method compared to a 1NN-DTW classifier.

On the Brazilian Amazon dataset. We extract two years of MODIS vegetation index time series
corresponding to the cropping periods 2005-2006 and 2006-2007. The field data used for validation is the
same as in [Arvor 2011]. The dataset is made of 46 MODIS images from July 2005 to July 2007, i.e. 23
MODIS images per year. The study area is located in the state of Mato Grosso, in the southern Brazilian
amazon, that has suffered dramatic land use changes since the 1970s due to the rapid progress of an
agricultural frontier. The vegetation index time series refers to Enhanced Vegetation Index (EVI) which
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Figure 4.5: Error rates for D-BoTSW versus a 1NN-DTW classifier. Green upper triangle indicates a dataset
for which D-BoTSW has a lower error rate than 1NN-DTW while a Green lower triangle indicates the opposite.
Among all the tested datasets, 64 out of 85 datasets have a lower error rate for D-BoTSW.

is derived from the Normalized Difference Vegetation Index (NDVI). Five crop classes were identified,
two of them referring to single cropping practices whereas the 3 remaining ones refer to double cropping
practices. The aim is then to determine the crop practice with the evolution of the EVI. Figure 4.6 gives
the histograms that have been extracted with D-BoTSW. When it comes to classification accuracies, D-
BoTSW has the best performances when compared to standalone shallow classification methods. Detailed
results are presented in [Bailly 2016,Bailly 2018]
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Figure 4.12 – Brazilian Amazon – Average histogram per class (D-BoTSW)
Figure 4.6: Average histogram per class.
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In the previous section, we have considered methods that first look for an appropriate embedding
before applying a machine learning technique on it. In this section, we will cover works that aim at
instead defining new metrics for time series, avoiding this embedding step. The first work [Tavenard 2017]
defines a new kernel for time series that takes into account the temporal dimension when comparing time
series. The second one [Vayer 2020b] builds on the DTW metric to compare time series that live in
incomparable spaces or that have to be realigned. It relies on a global latent representation of the feature
space in which the time series can be compared.

5.1 A temporal kernel for time series

In the time-series classification context, the majority of the most accurate core methods are based on the
Bag-of-Words framework, in which sets of local features are first extracted from time series. A dictionary
of words is then learned and each time series is finally represented by a histogram of word occurrences
(see section 4.2 for a temporal SIFT-feature example). This representation induces a loss of information
due to the quantization of features into words as all the time series are represented using the same fixed
dictionary. In order to overcome this issue, we define a novel temporal kernel that takes as input a set
of feature vectors extracted from the time series and their timestamps, allowing taking into account the
feature localization.
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5.1.1 A temporal kernel between sets of features

Match kernel and Signature Quadratic Form Distance. Our kernel relies on the match kernel
[Bo 2009] (a.k.a. set kernel) that takes as input unordered sets of features:

K(v,w) =
n∑
i=1

m∑
j=1

kRBF(vi, wj) (5.1)

and the Signature Quadratic Form Distance (SQFD) that enables the comparison of time series x and y
represented by weighted sets of features v and w called feature signatures (assuming here that all features
have the same weight 1

n and 1
m ):

SQFD(v,w)2 = 1
n2K(v,v) + 1

m2K(w,w)− 2
n ·m

K(v,w) (5.2)

where kRBF is the Gaussian kernel. Note that SQFD then corresponds to a biased estimator of the
squared difference between the mean of the samples v and w and is classically used to test the difference
between two distributions [Gretton 2012]. Finally, in order to kernelize SQFD, we can embed it into a
RBF kernel:

KSQFD(v,w) = e−γf SQFD(v,w)2
. (5.3)

Time-sensitive feature set kernel. Kernel (5.3) ignores the temporal location of the features in the
time series. To integrate this information, we propose to augment the features with the time index at

which they are extracted. By defining g(vi, ti) =
(
vi1, . . . , vid,

√
γt
γf
ti

)
, with γf a scale parameter and

γt a temporal parameter, we obtained a time-sensitive kernel

ktRBF((vi, ti), (wj , tj)) = e−γt (tj−ti)2
· kRBF(vi, wj) = e−γf ‖g(vi,ti)−g(wj ,tj)‖

2
. (5.4)

Efficient computation of the time-sensitive kernel. Kernel (5.4) is an RBF kernel itself, and
Random Fourier Features [Rahimi 2007] can be used in order to approximate it with a linear kernel:

1
n ·m

K(v,w) = 1
n ·m

n∑
i=1

m∑
j=1

kRBF(vi, wj) (5.5)

≈ 1
n ·m

n∑
i=1

m∑
j=1
〈φRBF(vi), φRBF(wj)〉 (5.6)

≈

〈
1
n

n∑
i=1

φRBF(vi)︸ ︷︷ ︸
φ(v)

,
1
m

m∑
j=1

φRBF(wj)︸ ︷︷ ︸
φ(w)

〉
(5.7)

The SQFD kernel then becomes SQFD(v,w)2 = ‖φ(v)− φ(w)‖2.

5.1.2 Experiments and conclusion

Impact of the temporal parameter. Figure 5.1 illustrates the impact of the temporal parameter γf :
a low value takes all matches into account without considering their temporal locations, whereas large
values favors diagonal matches. Regarding the effectiveness of the algorithm, we show that i) at training
time, our kernel is faster than the original BoW approach; ii) at testing time, BoW and our kernel have
almost constant computation needs, BoW being one order of magnitude faster.
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Figure 5.1: Impact of the ktRBF kernel on similarity matrices. From left to right, growing γt values are used from
γt = 0 to a large γt value that ignores almost all non-diagonal matches. Blue color indicate low similarity whereas
red color represents high similarity.

On the UCR archive. We compare our kernel with i) the kernel with no temporal information ii)
the original BoW approach. By performing a Wilcoxon rank test, we conclude that (see figure 5.2), on
the 85 datasets of the UCR archive, our temporal kernel gives significantly better performances than its
competitors.

Figure 5.2: Pairwise performance comparisons. A green point indicates a dataset of the UCR archive for which
our temporal kernel has a lower error rate than (left) the non-temporal version of the kernel (right) the original
BoW method (no kernel). Among the datasets, the temporal kernel has a better performance on 52 datasets out
of 85 than the non-temporal version, and on 49 out of 85 than the original BoW method.

5.2 Dynamic Time Warping with Global Invariances
We now focus on designing a metric that is able to compare time series of possibly different dimensions
and that exhibit some invariances.

5.2.1 Definition

We propose here to solve the following joint optimization problem:

DTW-GI(x,y) = min
f∈F,π∈Π(x,y)

∑
(i,j)∈π

d(xi, f(y)j)) = min
f∈F,π∈Π(x,y)

〈π,C(x, f(y))〉 (5.8)
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where F is a family of functions from Rp to Rr, f(y) is a shortcut notation for the transformation f

applied to all observations in y.
The C(x, f(y)) matrix is the cross-similarity matrix of squared Euclidean distances between samples

from x and f(y), respectively. These similarity measures estimate both temporal alignment and feature
space transformation between time series simultaneously, allowing the alignment of time series when the
similarity should be defined up to a global transformation. What should be noted in this formulation is
that the dimension p and r do not have to be the same, as illustrated in figure 5.3. It is also straightforward
to see that DTW-GI(x,x) = 0 for any x as soon as F contains the identity map.

Registration

f⇤ 2 V2,3

yf⇤(y)x

DTW-GI(x,y) = min
f2F,⇡2A(x,y)

X

(i,j)2⇡

d(xi, f(yj))

DTW path ⇡⇤

<latexit sha1_base64="3Rc+DLPm0m8waEJGml6sVc/VGcs="></latexit>

Figure 5.3: DTW-GI aligns time series by optimizing jointly on both temporal alignment (through Dynamic
Time Warping) and feature space transformation (denoted f here). Time series represented here are color-coded
trajectories, whose starting (resp. end) point is depicted in blue (resp. red).

This definition can be extended to the softDTW case:

DTWγ-GI(x,y) = min
f∈F

min
π∈Π(x,y)

γ 〈π,C(x, f(y))〉 = min
f∈F
−γ log

∑
π∈Π(x,y)

e−〈π,C(x,f(y))〉/γ (5.9)

5.2.2 Optimization

Depending of the nature of F , optimization on the above-defined losses can be performed in several ways.
We now present one optimization scheme for each loss.

Solving DTW-GI. When DTW-GI is concerned, by considering that f belong to the Stieffel manifold,
we use a Block- Coordinate Descent (BCD) strategy that alternates over two steps:

• for a fixed f , minimizing the temporal alignments thanks to the DTW algorithm.

• for a fixed matrix π, the set of feature space transformations f is obtained by solving a singular
value problem (SVD) on the matrix x>πy.

Figure 5.4 illustrates the ability of our method to recover invariance to rotation. To do so, we rely on
a synthetic dataset of noisy spiral-like 2d trajectories. For increasing values of an angle θ, we generate
pairs of spirals rotated by θ with additive gaussian noise. Alignments between a reference time series
and variants that are subject to an increasing rotation θ are computed and repeated 50 times per angle.
The ratio of each distance to the distance when θ = 0 is reported on the figure. One can clearly see that
the GI counterparts of DTW and softDTW are invariant to rotation in the 2d feature space, while DTW
and softDTW are not.
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Figure 5.4: (Left) DTW-GI jointly estimates temporal alignment and global rotation between time series. On
the contrary, standard DTW alignment fails at capturing feature space distortions and therefore produces mostly
erroneous alignment (matching in red), except at the beginning and end of the time series, whose alignments
are preserved thanks to DTW border constraints. (Right) CTW and GromovDTW, that should be invariant to
rotation, still exhibit an increase in the loss with the angle, suggesting that their algorithm has more difficulties
reaching a global minimum in practice.

Solving soft-DTW-GI. When F is a parametric family of functions that are differentiable with respect
to their parameters, problem (5.9) can be solved with a gradient descent on the parameters of f . Since
softDTW is smooth, this strategy can be used to compute gradients of DTWγ-GI w.r.t. the parameter
θ of f(θ).

Solving DTW-GI barycenters Let us now assume we are given a set {x(i)}i of time series of possibly
different lengths and dimensionalities. A barycenter of this set in the DTW-GI sense is a solution to the
following optimization problem:

min
b∈RT×q

∑
i

wi min
fi∈F

DTW (x(i), fi(b)), (5.10)

where weights {wi}i as well as barycenter length T and dimensionality q are provided as input to the
problem. For solving the problem, in the same way as DTW-GI, either a gradient descent can be
performed, or a BCD procedure can be derived, alternating between barycentric coordinate estimation
and DTW-GI alignments. Figure 5.5 provides some barycenters in different settings. Temporal alignments
in (soft)DTW-GI successfully capture the irregular sampling from the samples to be averaged (denser
towards the center of the spiral / loop of the folium) and all the barycenters can be considered as
meaningful. On the contrary, baseline barycenters can fail (second line) or cannot be applied when
datasets are made of series that do not lie in the same space.

5.2.3 Experiments

We tested DTW-GI in different settings. First, in a time series forecasting scenario, we provide qualitative
and quantitative results in a dataset composed of 3.6 million video frames of 3 dimensional human
movements. Quantitative results show that (soft)DTW-GI allows realigning the different poses while
taking into account the temporal variability of the movement, while competitive methods can not take
into account an explicit spatial transformation. We also consider a cover song identification, which is the
task of retrieving, for a given query song, its covers (that is to say different versions of the same song)
in a training set. Again, DTW-GI gives better results than it competitors, thanks to the versatility of
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 DTW softDTW DTW-GI softDTW-GI

Figure 5.5: Barycenter computation using (i) DTW and softDTW baseline approaches, (ii) their rotation-invariant
counterparts DTW-GI and softDTW-GI. Time series represented here are color-coded trajectories, whose starting
(resp. end) point is depicted in blue (resp. red).

the method that allows introducing prior information about the feature space, with the definition of the
space F .
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In this chapter, I briefly introduce the main ingredients of discrete Optimal Transport (OT) that
will be useful for the next chapters; there exist excellent books that describe widely the OT theory.
The reader can refer to [Villani 2009] for a mathematical oriented overview of OT. A more accessible
introduction for applied mathematician with a rigorous description of the theory of OT can be found
in [Santambrogio 2015]. For the computational aspects, the reader can refer to the complete book
of [Peyré 2019]. In this section, I will also review the Gromov-Wasserstein problem, for which a complete
description can be found in [Mémoli 2011].

I only focus on discrete measures and will consider clouds of points X = {xi}ni=1 and Y = {yj}mj=1.
Let h ∈ R+

n and g ∈ R+
m be two discrete distributions of mass on X and Y, such that hi (resp. gj) is the

mass at xi (resp. yj). We set h ∈ Σn and g ∈ Σm where Σn = {(ai)i ≥ 0,
∑
i ai = 1} is the probability

simplex. A discrete measure µX (resp. µY ) with weights h (resp. g) and locations X (resp. Y) is given
by:

µX =
n∑
i=1

hiδxi (6.1)

with δxi the Dirac at position xi. Note that, in the machine learning context, weights are often set as
uniform (hi = 1

n , gj = 1
m ).

Notations. 1n is a vector of n entries of ones and In is the identity matrix of size n. ⊗ is the kronecker
product and 〈·, ·〉 is the Frobenius inner product. Dφ is the Bregman divergence generated by the strictly
convex and differentiable function φ, i.e., Dφ(u,v) =

∑
i[φ(ui)− φ(vi)− φ′(vi)(ui − vi)].
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6.1 From Monge and Kantorovich formulations to the (Gromov-)
Wasserstein distance

The OT problem was introduced by Gaspard Monge [Monge 1781] in a Mémoire on which he aims at
moving “optimally” dirt from one place to another, i.e. by minimizing the overall cost of transportation
of all the masses. Almost two centuries later, Kantorovich [Kantorovich 1942] proposed a relaxation of
the problem in order to allocate optimally economical resources.

Monge problem. The Monge problem looks for a mapM : {x1, · · · ,xn} → {y1, · · · ,ym} that pushes
the mass µX toward µY :

∀1 ≤ j ≤ m, gj =
∑

i such that (s.t.) M(xi)=yj

hi. (6.2)

Note here that each point xi must be mapped to at most one point yj , the reverse being false. By
associating a cost d(xi,yj) of mapping xi to yj , the Monge map is the one such that:

min
M

{∑
i

d(xi,M(xi)) s.t. eq. (6.2) is satisfied
}
. (6.3)

When n = m and hi = gj = 1
n , it comes down to an optimal assignment problem:

min
σ∈Sn

∑
i

d(xi,yσ(i)) (6.4)

where σ ∈ Sn is a one-to-one mapping {1, · · · , n} → {1, · · · , n}.

Kantorovich problem. The Monge problem may not have a solution (just think of a simple case where
n = 1 and m = 2, there is no map that allows mapping point x1 to only one point yj while conserving
the mass); Kantorovitch proposed to relax the problem by allowing the mass of a point xi to be split
across several locations. As such, it produces a coupling matrix (rather than a map) that describes how
much mass from xi should be sent to yj . The balanced OT problem, as defined by [Kantorovich 1942],
is a linear problem that computes the minimum cost of moving h to g:

OT(h, g) = min
T≥0
〈C,T 〉 =

∑
i,j

Ci,jTi,j s.t. T1m = h,T>1n = g (6.5)

where T ∈ Rn×m+ is the coupling or transport matrix and C ∈ Rn×m+ is the cost matrix. The entry
Ci,j = (d(xi,yj))i,j of C represents the cost of moving point xi to yj , where d is the ground cost (see
figure 6.1 for an illustration).

The constraints on the transport matrix T require that ‖h‖1 = ‖g‖1 and that all the mass from h is
transported to g. It must then belong to the following set of constraints:

Π(h, g) =
{
T ∈ Rn×m+ |T1m = h,T>1n = g

}
. (6.6)

Wasserstein distance. When d is a distance, one can defined the q-Wasserstein distance at the power
of q:

W q
q (h, g) = min

T∈Π(h,g)
〈Cq,T 〉 = min

T∈Π(h,g)

∑
i,j

Cqi,jTi,j . (6.7)

The 1-Wasserstein distance (also known as the Earth mover’s distance [Rubner 2000]) is obtained for
Ci,j = ‖xi − yj‖.



6.1. From Monge and Kantorovich formulations to the (Gromov-) Wasserstein distance 49

x1
x2

x3

x4

y1

y2

y3

d(y1,
x2)

x1

x2

x3

x4

y1 y2 y3

C matrix

h

g

T ∗ matrix

x1
x2

x3

x4

y1

y2

y3

Figure 6.1: The Monge-Kantorovich problem. From two sets of points X and Y with the associated distributions
h and g (depicted here by the size of the points) and a ground cost d, one look the optimal coupling matrix T ∗

(which corresponds to the optimal Monge map in this example) that minimizes the overall transport cost, by
transporting all the mass from one distribution to another. This matrix produces a map that associates points
xi to yj .

Gromov-Wassersein distance. Despite some appealing properties, the Kantorovich or Wasserstein
distance fail at comparing point clouds that live in incomparable spaces, that is to say when they are
not part of a common metric space (no function d can be defined to compare them, think of points
with different dimensions or that contains different features for example). Gromov-Wasserstein aims at
computing a distance in this case, also allowing interesting properties such as rotational and translational
invariance. Let us note dX (resp. dY ) a ground cost between two samples of X (resp. Y) and denote
CX = (dX(xi,xk))i,k (resp. CY = (dY (yj ,yl))j,l). The Gromov-Wasserstein at the power of q is defined
as:

GW q
q (CX ,CY ,h, g) = min

T∈Π(h,g)
〈L(CX ,CY )q ⊗ T ,T 〉 = min

T∈Π(h,g)

∑
i,j,k,l

L(dX(xi,xk), dY (yj ,yl))qTi,jTk,l

(6.8)
in which L(CX ,CY ) is a loss function, e.g. L(a, b) = |a− b|2/2 (see figure 6.2 for an illustration).
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Figure 6.2: The Gromov-Wasserstein distance. From two sets of points X ⊂ R2 and Y ⊂ R3 with the associated
distributions h and g (depicted here by the size of the points) and two ground costs dX and dY , one look for
the optimal coupling matrix T ∗ that minimizes the overall transport cost between intra-domain distances, by
transporting all the mass from one distribution to another. In this example, this matrix produces a map that
associates points xi to yj , even when they leave into incomparable spaces.
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6.2 Relaxed and regularized optimal transport
So far, the OT distances require the transport matrix T belong to the set of constraints (6.6), that is to
say that ‖h‖1 = ‖g‖1 and that all the mass from h is transported to g. It leads to a sparse matrix T ∗

which has at most n+m− 1 values that are non zeros (see section 6.3). Nevertheless, in many or maybe
most machine learning applications, these features may be undesirable. Let us describe 3 specific issues:

• one may rather work with unnormalized histograms as the mass may be an important feature of the
problem, e.g. when dealing with neuroimaging data [Gramfort 2015] or performing color transfer
between images [Rabin 2014], in which the source and target objects of interest have different
masses;

• the data can contain some outliers that may drive OT to large and non-significant values (see figure
6.3);

• one may rather build on more that n+m− 1 coupling values, allowing one to lower the weights of
noisy observations.

OT, cost = 0.20 Unbalanced OT, cost = 0.14

Figure 6.3: Few outliers can disrupt the transport plan and drive the OT distance to unexpected large values.
(Left) the OT transport matrix is depicted with grey lines (Right) the partial OT solution, that allows excluding
the outliers from the solution.

To overcome those issues, several relaxed and regularized versions have been proposed, whose interest
depends on the applicative point of view. [Kantorovich 1957] first extended the OT distance to the
unbalanced setting by introducing the waste function, allowing for cases in which it is “cheaper” to waste
mass rather than transporting it [Guittet 2002]. Despite this first work, it is only in the last ten years
that solid theories have been developed. Here, we describe some relaxations of the OT problem, first
describing problems in which the mass conservation constraint is relaxed, then considering problems in
which regularity conditions of the mapping is sought. We will refer to as balanced OT the unconstrained
problem.

6.2.1 Unbalanced and partial optimal transport

Unbalanced optimal transport (UOT) [Benamou 2003] allows some mass variation in the transportation
problem. It solves the Kantorovich problem but considers a different set of constraints: rather than
imposing a strict conservation of the mass, the deviations from the true marginals are penalized by means
of a given Bregman divergenceDϕ (as introduced in [Chizat 2018a]), where γ1 and γ2 are hyperparameters
that represent how much the deviation is penalized:

Πu(h, g) =
{
T ∈ Rn×m+ | Dϕ(T1m,h) ≤ γ1, Dϕ(T>1n, g) ≤ γ2

}
. (6.9)
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Balanced OT Unbalanced OT Unbalanced + entropic reg. OT

Figure 6.4: Transport matrices of the balanced OT (left), unbalanced OT (center) and UOT with an entropic
regularization (right) between two empirical histograms. The orange and blue dots illustrate the amount of
mass that is missing for each bin of the histograms (no dots indicate that all the mass has been transported).
UOT allows accounting for a difference of mass between the 2 main modes of the histograms, avoiding “noisy”
transportation. Adding the entropic regularization leads to a spreading of the mass (inspired from a presentation
of Lenaïc Chizat).

Note that balanced OT is recovered when γ1 = γ2 → 0. Furthermore, when γ1 or γ2 → 0, we recover the
semi-relaxed OT [Rabin 2014]. In practice, authors often set γ1 = γ2 = γ for UOT in order to reduce
the necessity of hyperparameter tuning. Figure 6.4 illustrates the advantages of the UOT formulation.
Considering two empirical histograms with 2 modes with different mass, the balanced OT solution pro-
vides an extra mapping between two distinct modes of the distributions; when relaxing the constraint,
one allows mass variation, avoiding unnecessary coupling: the bins of the 2 modes are then correctly
associated.

Some problems require to quantify precisely the amount of transportation of mass s ≤ min(‖h‖1, ‖g‖1)
needed to compare the distributions (e.g. when the proportion of outliers is known). In that case, we
rather consider the following set of constraints:

Πp(h, g) =
{
T ∈ Rn×m+ | T1m = h, T>1n = g, 1>nT1m = s

}
. (6.10)

This problem is coined the partial optimal transport problem [Caffarelli 2010,Figalli 2010].
Unbalanced and partial OT can be both rewritten as, using a Lagrangian formulation:

UOTλ(h, g) = 〈C,T ∗〉 where T ∗ = min
T≥0

〈C,T 〉+ λ1Dϕ(T1m,h) + λ2Dϕ(T>1n, g) (6.11)

where λ1 and λ2 are hyperparameters that represent the strengths of penalization. Various divergences
have been considered in the literature. The `1 norm gives rise to the partial optimal transport; the
squared `2 norm provides a sparse and smooth transport plan [Blondel 2018] when introducing a strongly
convex term in eq. (6.11); the Kullback-Leibler divergence has been widely considered in the literature
[Chizat 2018b].

It has been shown in [Chizat 2018b] that partial optimal transport is an instance of the unbalanced
OT when considering the `1 norm as a divergence.

6.2.2 Entropic-regularized optimal transport

The idea of adding an entropic regularization to the OT problem has been first introduced by [Cu-
turi 2013]. It penalizes the deviation of the transport matrix from independence, requiring the transport
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matrix to belong to the following set of constraints:

Πe(h, g) =
{
T ∈ Rn×m+ | h(hg>)− h(T ) ≤ α

}
(6.12)

in which h is the entropy of the matrices, e.g. h(T ) = −
∑
i,j Tij log Tij , with the convention that

0 log(0) = 0. By setting α → ∞, it is easy to see that it comes down to solving an original OT
problem; when α → 0, it can be shown that the optimal transport matrix tends to the independance
kernel [Cuturi 2013]. Considering again a Lagrangian formulation, it can be equivalently rewritten as

OTε(h, g) = min
T∈Π(h,g)

〈C,T 〉+ εh(P ), (6.13)

with ε a parameter that controls the strength of the regularization. This formulation has several virtues.
First, since the entropy is a strongly convex function, problem (6.13) has a unique optimal solution.
Intuitively, the entropic regularization pushes the solution away from the boundary of its convex polytope.
With the increase of ε, the optimal solution moves progressively into the interior of the polytope, causing
a loss of sparsity in P. This loss of sparsity can be desirable when the data is polluted with noise or
outliers: it enables to smooth the transport plan, and hence spreads the impact of those data. Another
advantage of this formulation is that it can be solved by iterating simple matrix products (see section
6.3), allowing the “lightspeed” computation of the solution. Those matrix products can be vectorized
and are then amenable to GPU computations. Last but not least, it is differentiable [Luise 2018], which
enables its use as a loss function.

6.2.3 Other regularizations and relaxations

Several other regularizations have been introduced in the literature, depending on the problem at hand.
Among them, one can cite the capacity constrained optimal transport [Korman 2015] that puts an upper
bound on each of the coupling weights. To deal with image processing tasks, and in order to take into
account families of multimodal histograms, [Ferradans 2014] relaxed the 1:1 hypothesis (one point from
the source associated to only one point of the target when n = m and the weights are uniforms) by
allowing each point of the source to be transported to multiple points of the target and vice versa. They
also proposed a regularization to ensure the regularity of the solution, smoothing the optimal transport
plan by controlling the displacement of pairs of points. In the same line of research, [Flamary 2014]
propose a Laplacian regularization to promote the respect of the proximities observed in the original
distribution after the transport; it has been successfully applied in domain adaptation problems. For
computational efficiency issues, [Thibault 2021] propose to overrelax the Bregman projection operators
within the Sinkhorn algorithm, allowing for faster convergence.

6.3 Numerical resolution of discrete optimal transport
Solving the OT problem is computationally intensive. In this section, we first review the particular case in
which the distributions are 1-dimensional, then the main algorithms that solve problem (6.5) and finally
review briefly the Sinkhorn algorithm that solves entropic OT (6.13).

1-dimensional distributions. Let us suppose that the data are one-dimensional, that n = m, hi =
gj = 1

n , and that we sort the points x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn. Eq. (6.7) reads in that case:

W q
q (h, g) = min

σ∈Sn

1
n

∑
i

∣∣xi − yσ(i)
∣∣q (6.14)
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in which Sn is the set of all permutations. It can be shown that choosing σ(i) = i gives the optimal
solution, meaning that the solution can be computed in O(n log(n)). This result can be extended when
n 6= m or when the masses are not uniform: in that case, we sort the points and “fill” the transport
matrix as long as the current marginal is not full. This can be solved easily with a dynamic time warping
approach but the computing cost is higher than simple sorts. While this case has a limited interest per
se, it is one of the main ingredients of the sliced Wasserstein distance (see below).

There also exist efficient algorithms when the two histograms are unnormalized. In that case, and
considering n = m and uniform histograms, [Aggarwal 1992] and [Bonneel 2019] propose a quasi-linear
algorithm that solves the semi-relaxed optimal transport problem.

Solving the exact OT problem. The most common algorithmic tools to solve the discrete OT
problem are borrowed from combinatorial optimization and linear programming. Indeed, it is easy to
see that the Kantorovitch problem can be expressed as a linear programming program with equality
constraints. Let t = vec(T ), c = vec(C) and y> = [h>, g>]. Problem (6.5) can be re-written as

min
t≥0

F (t) def= c>t such that Ht = y (6.15)

where the design matrix H = [H>r ,H>c ]> is a (n + m) × (nm) matrix that is the concatenation of the
matrices Hr = In ⊗ 1

>
m and Hc = 1

T
n ⊗ Im that allows computing sums of the rows and columns of T ,

respectively (note that we will use this vectorization in Chapter 8.2). This formulation emphasizes that
there are n+m constraints, with one of them being redundant (as the mass of the 2 distributions must
be equal), leading to at most n + m − 1 non zeros values in the solution. Methods such as the network
simplex or interior point methods can then be used, with a complexity being O(n3 log(n)), making their
use prohibitive in large scale applications (more than a few tens of thousands of points).

Some lines of works have focused on defining approximated Wasserstein distance that may be faster
to compute. For instance, [Pele 2009] get a lower bound on the Wasserstein distance by thresholding the
cost matrix, allowing them to reduce the complexity. [Sommerfeld 2019] propose a probabilistic sampling
scheme that takes random subset of the points, giving a fast approximation of the distance. In the same
line, [Genevay 2016] propose a stochastic algorithm that can be used when the distributions can be sam-
pled from. Building on the fast computation of one dimensional optimal transport, the sliced Wasserstein
distance [Rabin 2011] linearly projects high dimensional data into sets of mono-dimensional distributions
and approximate the Wasserstein distance as the average of the Wasserstein distances between all pro-
jected measures. This framework provides an efficient algorithm that can handle millions of points and
has similar properties to the Wasserstein distance [Bonnotte 2013].

When it comes to unbalanced optimal transport problem, [Blondel 2018] use a L-BFGS algorithm
[Liu 1989] to solve problem (6.11) when the divergence is the `2 norm. [Caffarelli 2010] show that the
partial optimal transport problem can be solved by adding a tariff-free reservoir (in other word, adding a
dummy point on each of the distributions with an associated cost value of 0), allowing the use of standard
optimization tools to solve the problem, but it does not allow them to control the amount of mass that is
finally going to be optimally transported. When dealing with unnormalized histograms, [Gramfort 2015]
build on the previous result to compute the results of a semi-relaxed optimal transport problem.

Solving the (regularized) entropic OT problem. To reduce the computational burden, the entropic
regularized OT (6.13) can be solved using the Sinkhorn-Knopp algorithm [Sinkhorn 1967] that takes
advantage of a matrix scaling algorithm, providing a significant speed-up. [Cuturi 2013] shows that the
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solution of the problem can be expressed as a factorization of matrices (T = diag(u)Kdiag(v), where
K = exp−C/ε is the element-wise exponential of −C/ε, and the so-called scaling u and v are two
nonnegative vectors). It leads to very simple closed form expressions for all steps of the algorithm, allowing
its use on GPU. It is shown in [Altschuler 2017] that this approach allows finding an ε-approximation for
the OT distance in O(n2/ε3) arithmetic operations, leading to poor performances when ε is small, but
allowing a significant speed up for moderate values of ε. [Benamou 2015] further show that the entropic
regularized problem can be recast as minimizing a Kullback Leibler divergence, then allowing them to
define iterative Bregman projections to solve the problem. This reformulation enables enriching the set of
constraints, then defining algorithms that solve the partial optimal transport problem (6.11) for instance.
As for the balanced entropic OT problem, the convergence speed of the algorithm degrades when ε→ 0.
Solving the UOT problem (6.11) with an entropic penalty have been notably tackled by [Chizat 2018a]
who propose scaling algorithms that work when considering KL or total variation penalties (see figure
6.4 for an illustration with the KL penalty).

Sliced-Wasserstein. Sliced-Wasserstein [Rabin 2011] is a method that gives an approximation of OT,
relying on the closed form of OT for 1-dimensional probability distributions (eq.(6.14)). The main idea
is to randomly select lines in Rd, to project the samples into these lines and to compute the resulting
1d-Wasserstein distance. By averaging all these 1-dimensional distances, we obtain the sliced-Wasserstein
distance, with a complexity of O(Ldn + Ln log(n)) where L is the number of projection directions and
d the dimension of the data. It has been shown to enjoy several interesting properties: it defines a
distance [Bonnotte 2013] and the approximation converge towards the actual Wasserstein distance with a
sample complexity independent of the dimension [Nadjahi 2020]. Note that, by averaging 1d-dimensional
distances, sliced-Wasserstein only provides an approximation of the Wasserstein distance, but does not
provide the associated transport plan.

Solving the Gromov-Wasserstein problem. Adding an entropic regularization to the Gromov-
Wasserstein problem (6.8) allows defining (non convex) optimization problem, using a projected gradient
descent algorithm: it iterates between solving a OT problem whose cost matrix is the gradient of the
estimation of the transport matrix computed at the previous iteration and the Kullback-Leibler projector
of the previous solution. When the step size is small enough, this algorithm is guaranteed to converge,
but again, its computational performances degrade when ε takes small values.

A different approach is to rather solve a lower bound of the Gromov-Wasserstein distance, e.g. TLB
[Mémoli 2011]. It decouples the alignment term into two separate terms, allowing removing the quadratic
dependence, and optimizes over each term separately:

TLBqq (CX ,CY ,h, g) = min
T 1∈Π(h,g)

∑
k,l

 min
T 2∈Π(h,g)

∑
i,j

L(dX(xi,xk), dY (yj ,yl))qT 2
i,j

T 1
k,l (6.16)

The problem then comes down to a “Wasserstein distance of a Wasserstein distance” and is illustrated
in figure 6.5. It involves linear programming, hence is readily computable, and may be sufficient in some
applications [Chowdhury 2019].

Existing implementations. There exist several implementations that allow using optimal transport
tools in different context. The Python POT library [Flamary 2021] provides recent state-of-the-art solvers
for various optimal transport problems related to statistics and machine learning, allowing one to solve
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Figure 6.5: The TLB lower bound of the GW distance. From two sets of points X ⊂ R2 and Y ⊂ R3 with uniform
distributions h and g (not depicted here), one look the optimal coupling matrix T 1∗ that minimizes the overall
transport cost between intra-domain distances viewed as vectors, and then compute a second optimal coupling
matrix based on the resulting cost matrix.

Kantorovich and Gromov-Wasserstein problems, compute barycenters, together with solvers for entropic
OT, unbalanced and partial OT as well. It comes with many illustrative examples and notebooks. It
is an open and collaborative toolbox, with more than 20 contributors, and is actively maintained and
enriched.

The OTJulia [Zhang 2020] is a more complete package that can be seen as a Julia counterpart of
POT. It implements several OT solvers with detailed documentation. Optimal Transport Tools (OTT,
[Cuturi 2021]) is a JAX package that provides tools to compute and differentiate optimal transport
problems. It is particularly efficient when dealing with the Sinkhorn algorithm.

6.4 Optimal transport and machine learning: current state and some
challenges

Over the last few years, OT has quickly become a central topic in machine learning. From a field with
marginal interest in the ML community about 5 years ago (Google Scholar indicates 156 results when
searching for “Optimal Transport”+”Machine Learning” in 2016), it is now an integral component of
many core ML methods (with almost 3000 results for 2021). It has been successfully employed in a wide
range of challenging machine learning applications such as supervised learning [Frogner 2015], clustering
[Ho 2017], generative modelling [Arjovsky 2017], domain adaptation [Courty 2016], Bayesian inference
[El Moselhy 2012], reinforcement learning [Bellemare 2017], learning of structured data [Maretic 2019],
fair learning [Jiang 2020] or natural language processing [Kusner 2015], among many others.

Optimal transport has been mainly used in machine learning applications in three different ways:

• use the distance (or discrepancy) provided by optimal transport: the Wasserstein distance has been
shown to be a meaningful way to compare (empirical) distributions or diracs. As such, it can be
used in distance-based ML algorithms, such as k-nearest neighbors [Backurs 2020] or kernel-based
methods [Vayer 2019a]. The Wasserstein barycenter has also been used in k-means algorithm for
instance [Cuturi 2014b], estimating parameters of Gaussian mixtures [Dessein 2017] or for missing
data imputation [Muzellec 2020] to cite a few.
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• use the optimal transport matrix, in applications such as domain adaptation [Courty 2016], positive-
unlabeled learning [Chapel 2020] or color transfer [Korotin 2020], in which the matching between
the source and the target is sought.

• use OT as a loss to update generative models. The aim can be to find a distribution that fits well
the data, aligning the two of them by minimizing their expected Wasserstein distance estimation
(Wasserstein GAN [Arjovsky 2017] is a flagship of such applications).

Not to mention Wasserstein gradient flows that can describe non-linear diffusion equations. All these
successes have led to fruitful discussions between both the OT and ML communities. ML practitioners
have first borrowed to the classical OT machinery developed by the mathematicians over the past century.
But the challenges raised by the ML applications have also raised new problems about OT. In the
following, I describe some of the aspects of the ML applications that have to be taken into account, that
will be discussed in the next sections of this document.

Sensitivity to noise and/or outliers. A key consideration of ML algorithms is their robustness or
resilience to noisy or mislabelled observations. The balanced OT formulation is sensitive to outliers since
its objective function includes all the samples and features (through the cost matrix) and few outliers can
disrupt the transport plan, driving the OT distance to unexpected large values (see figure 6.3). There
is thus a need to develop solid theories and efficient mathematical framework that allows mitigating
(or zeroing) the weights of some of the samples but also working with data in high dimensional spaces,
with attributes that are prone to noise. In the very past few years, many works have been proposing
robust variants of the OT distance, by mitigating the impact of the outliers thanks to the unbalanced or
partial optimal transport formulation [Mukherjee 2021,Balaji 2020] or by projecting the measures into
low-dimensional spaces [Paty 2019,Dhouib 2020,Jawanpuria 2020].

Need for large scale algorithms. ML practicionners usually deal with a large or huge amount of
data. An important part of work then investigates large scale numerical optimization. The success of OT
among the ML community is probably mainly due to the introduction of larger scale algorithms such that
the entropy-regularized OT or the sliced-Wasserstein algorithm [Rabin 2011]. There is still a room for
developing algorithms that challenge the heavy computational cost of solving (exact) OT; recent works
rely on stochastic optimization with minibatch strategy [Genevay 2018, Fatras 2020] in order to reduce
the cost per iteration when dealing with neural networks. Few works have addressed the large scale
optimization of Gromov-Wasserstein: [Vayer 2019b] propose the sliced-Gromov Wasserstein that provides
an approximation of the distance; [Kerdoncuff 2021] rely on subsamples to approximate the distance.

Dealing with incomparable data, that do not live in the same space, that may have suffer
domain shift or are highly structured. In the machine learning community, data may not be
directly comparable, because either they have been collected under distinct environments, are described
by different features or cannot be represented in the form sample-features (see the introduction for a
deeper discussion). There is a need for developing OT-based methods for that kind of data. Gromov-
Wasserstein inherently deals with data that leave in incomparable spaces and, as such, have been used in
different applications [Peyré 2016,Alvarez-Melis 2018,Maretic 2019]; CO-optimal transport aligns both
the features and the samples in an uniform formulation [Redko 2020]. When it comes to data that have
suffer a domain shift between the source and the target, OT have been proved to be successful when
dealing with domain adaptation problems [Courty 2016,Redko 2017].
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6.5 Part outline and contributions
Here is a short description of the 2 following chapters of the manuscript that give my main contributions
in the field of discrete optimal transport for machine learning.

Chapter Optimal Transport for Structured Data deals with the definition of a new distance, the
Fused Gromov-Wasserstein distance, that allows comparing structured data, especially graphs. It relies
on Gromov-Wasserstein distance, which involves solving a quadratic programming that is intractable for
moderate to large scale problem. I then describe the sliced-Gromov Wasserstein distance, built on the
sliced-Wasserstein distance, that provides an approximation of the Gromov-Wasserstein distance. This
approximation enables dealing with one million of points in 1 second.

Chapter Algorithms for Partial and Unbalanced Optimal Transport provides new algorithms
for solving the exact partial (Gromov-)Wasserstein problem, allowing one to control the amount of mass
that is going to be transported. It also makes the link with sparse numerical optimization algorithms,
namely the Lasso (least absolute shrinkage and selection operator) method, allowing defining a regular-
ization path for unbalanced OT but also efficient multiplicative algorithms for solving the exact UOT
problem.
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This chapter deals with our work related to optimal transport for structured data, especially graphs.
I first define the new metric that we introduced, namely the Fused Gromov-Wasserstein distance, which
interpolates between the Wasserstein distance, computed on the features of the nodes of the graphs,
and the Gromov-Wasserstein distance, computed between the structure of the two graphs. One of the
drawbacks of the Gromov-Wasserstein distance is its high computational burden: I then present the
Sliced Gromov-Wasserstein that, akin to the Sliced-Wasserstein, allows the computation of an approx-
imate distance by averaging GW distances computed on random lines, providing a scalable algorithm.
These works have been performed during the Titouan Vayer’s PhD [Vayer 2020a] and were published
in [Vayer 2019a,Vayer 2020c,Vayer 2019b].

7.1 Fused Gromov-Wasserstein for structured data

7.1.1 Structured objects defined as probability distributions

The notion of structured data is inspired from the discrete point of view where one aims at comparing
labeled graphs. We consider undirected labeled graphs as tuples of the form G = (V, E , `f , `s) where (V, E)
are the set of vertices and edges of the graph. `f : V → Ω is a labelling function which associates each
vertex vi ∈ V with a feature ai

def= `f (vi) in some feature metric space (Ω, d). Similarly, `s : V → X maps
a vertex vi from the graph to its structure representation xi

def= `s(vi) in some structure space (X, dX)
specific to each graph. dX : X × X → R+ is a symmetric application which aims at measuring the
similarity between the nodes in the graph. In the graph context, dX can either encode the neighborhood
information of the nodes, the edge information of the graph or more generally it can model a distance
between the nodes such as the shortest path distance. When dX is a metric, we naturally endow the
structure with the metric space (X, dX).
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We enrich the previous definition of a structured object with a probability measure which serves
the purpose of signaling the relative importance of the object’s elements. For example, we can add a
probability (also denoted as weight) (hi)i ∈ Σn to each node in the graph. When all the nodes have
the same importance, we set the weights to be equal. Weights can also be used to encode some a
priori information. For instance, on segmented images, one can construct a graph using the spatial
neighborhood of the segmented zones, the features can be taken as the average color in the zone, and
the weights as the ratio of image pixels in the zone. This way, we define a fully supported probability
measure µ =

∑
i hiδ(xi,ai) which includes all the structured object information (see figure 7.1). Through

this procedure, we derive the notion of structured data as a tuple S = (G, hG) where G is a graph and hG
is a function that associates a weight to each vertex.

}
}

}
Figure 7.1: Discrete structured object (left) can be described by a labeled graph with (ai)i the feature information
of the object and (xi)i the structure information. If we enrich this object with a histogram (hi)i aiming at
measuring the relative importance of the nodes, we can represent the structured object as a fully supported
probability measure µ over the couple space of feature and structure with marginals µX and µA on the structure
and the features respectively (right).

7.1.2 Fused Gromov-Wasserstein distance

We aim at defining a distance between two graphs G1 and G2, described respectively by their probability
measure µ =

∑n
i=1 hiδ(xi,ai) and ν =

∑m
i=1 gjδ(yj ,bj), where h (resp. g) is an histogram in the simplex

Σn (resp. Σm).
The Fused Gromov-Wasserstein distance is defined for a trade-off parameter α ∈ [0, 1] as (see also

figure 7.2):

FGWq,α(h, g) = min
T∈Π(h,g)

(1− α)W q
q (h, g) + αGW q

q (C1,C2,h, g) (7.1)

= min
T∈Π(h,g)

〈
(1− α)Cq + αL(CX ,CY )q ⊗ T ,T

〉
(7.2)

= min
T∈Π(h,g)

∑
i,j,k,l

(
(1− α)d(ai, bj)q + α|dX(xi,xk)− dY (yj ,yl)|q

)
Ti,jTk,l (7.3)

where T is a transport matrix whose marginals are h and g.
With this definition, the resulting optimal coupling T ∗ is computed with respect to the structure and

the features. It tends to associate pairs of feature and structure points with similar distances within
each structure pair and with similar features. α allows a trade-off between the relative importance of
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Figure 7.2: FGW depends on both a similarity between each feature of each node of each graph (d(ai, bj))i,j and
between all intra-graph structure similarities

( ∣∣dX(xi,xk)− dY (yj ,yl)
∣∣ )
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Figure 7.3: Illustration of the difference between W , GW and FGW couplings. (left) empirical distributions µ
with 20 samples and ν with 30 samples whose color is proportional to their index. (middle) Cost matrices in the
feature (C) and structure domains (CX ,CY ) with similar samples in white. (right) Solution for all methods.
Dark blue indicates a non-zero coefficient of the transportation map between i and j. Feature distances is large
between points laying on the diagonal of C such that Wasserstein maps is anti-diagonal but unstructured. Fused
Gromov-Wasserstein incorporates both feature and structure maps in a single transport matrix.

the feature and the structural information. Figure 7.3 illustrates the differences between Wasserstein,
Gromov-Wasserstein and Fused Gromov-Wasserstein couplings T ∗.

Properties and extension to continuous OT. We have shown that FGW enjoys some desirable
properties. First, it can be defined even when the graphs have a different number of nodes that can
be described by continuous or discrete attributes (basically, it can be computed as soon as intra-cost
matrices CX , CY and outer-cost C can be defined). It also interpolates between the Wasserstein and
the Gromov-Wasserstein distance: as α tends to zero, one recovers the Wasserstein distance between
the features information; as α goes to one, one recovers the Gromov-Wasserstein distance between the
structure information. It also defines a metric for q = 1 and a semi-metric for q > 1.

The previous graph representation for structured data with a finite number of vertices extends nat-
urally to the continuous setting: we have also generalized FGW to general probability distributions and
studied its mathematical properties in [Vayer 2020c].

Algorithmic solutions. Equation (7.3) is clearly a quadratic problem w.r.t. T . We built upon a Frank-
Wolfe optimization scheme [Frank 1956] a.k.a. conditional gradient algorithm [Demianov 1970]. While
the problem is non convex, conditional gradient is known to converge to a local stationary point [Lacoste-
Julien 2016]. Algorithm 1 gives the main step of the algorithm; note that despite its apparent O(m2n2)
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complexity of computing the tensor product, one can simplify the sum to complexity O(mn2 + m2n)
when considering q = 2.

Algorithm 1 Frank-Wolfe algorithm for FGW

1: Input: Cost matrices C, CX and CY , α, q = 2, initial guess T (0)

2: for k = 0, 1, 2, 3, . . . do
3: G(k) ← (1− α)Cq + 2αL(CX ,CY )q ⊗ T (k) // Compute the gradient of eq. (7.3)
4: T̃

(k)
← arg minT∈Π(h,g)

〈
G(k),T

〉
// Solve OT with ground cost G(k)

5: E(k) ← T̃
(k)
− T (k)// Compute the gap

6: γ(k) ← arg minγ∈[0,1]
〈
(1−α)Cq+αL(CX ,CY )q⊗(T (k) +γE(k)), (T (k) +γE(k))

〉
// Line-search

7: T (k+1) ← (1− γ(k))T (k) + γ(k)T̃
(k)

// Update
8: end for
9: Return: T (k)

7.1.3 Experiments on structured data

We illustrate in this section the behavior of FGW on some synthetic and real datasets. The algorithm
has been implemented in the Python Optimal Transport toolbox [Flamary 2021]. More results in a wider
range of scenarii are provided in [Vayer 2019a] and [Vayer 2020c].

Illustration of FGW on trees

We construct two trees as illustrated in figure 7.4 where the 1D node features are shown with colors (in
red, features belong to [0, 1] and in blue, features are in [9, 10]). The structure similarity matrices CX and
CY are the shortest path between nodes. Figure 7.4 illustrates the behavior of regularized FGW distance
when trade-off parameter α changes. One can see that, for an intermediate α (center), the bottom and
first level structure is preserved as well as the feature matching (red on red and blue on blue).
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Figure 7.4: Difference on transportation maps between FGW and W distances on synthetic trees for different
values of alpha.

Illustration on time series

One of the main assets of FGW is that it can be used on a wide class of objects and time series are
one more example of this. We consider here 25 monodimensional time series composed of two humps
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in [0, 1] with random uniform height between 0 and 1. A 2D embedding is computed from a FGW

distance matrix with multidimensional scaling (MDS) in figure 7.5 (top). One can clearly see that the
representation with a reasonable α value in the center is the most discriminant one. Figure 7.5 (bottom)
illustrates the behavior of FGW on one pair of examples when going from Wasserstein to Gromov-
Wasserstein, the black line depicting the matching provided by the transport matrix. Only FGW in the
center finds a transport matrix that both respects the time sequences and aligns similar values in the
signals.

Increasing value of 

Class 1
Class 2

0 10 20 30 40 50

2D MDS embeddings from distances

0 10 20 30 40 50 0 10 20 30 40 50

Figure 7.5: Behavior of trade-off parameter α on a toy time series classification problem. α is increasing from left
(α = 0 : Wasserstein distance) to right (α = 1 : Gromov-Wasserstein distance). (Top row) 2D-embeddings are
computed from the set of pairwise distances between samples with MDS. (Bottom row) illustration of couplings
between two sample time series from opposite classes.

Experiments on graph classification

We also consider a graph-structured data classification context, considering several widely used bench-
marked datasets that have either labeled or vector nodes attributes. We proposed to embed the FGW
distance within a kernel e−γFGW , whose parameter γ ≥ 0 is chosen by cross validation. Note that
this kernel is not positive definite, and we regularize non-positive definite kernel shifting eigenvalue such
that every eigenvalue turns positive. Relying on simple distance measure such that `2 distance between
the features and the shortest path for the structure, we achieved very competitive performance when
comparing classification accuracies with state-of-the-art graph kernels such as the Weisfeler Lehman Ker-
nel [Shervashidze 2011] or the Weisfeler Optimal Assignment Kernel [Kriege 2016] and even a deep CNN
on graphs (PSCN) from [Niepert 2016]. We also noticed in that context that no information can be
discarded, leading to weaker performances when the nodes of the graphs have noisy labels or when the
structure is corrupted by noise. This analysis drove us to study the partial or unbalanced optimal trans-
port context, in which some mass can be discarded. Our contribution in this field will be described in
the next chapter. We also face the issue of lack of stability of FGW, mainly due to the computational
complexity of GW. In the next section, I describe a faster algorithm to approximate GW.
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7.2 Sliced Gromov-Wasserstein
Computing (F)GW involves solving a costly non convex quadratic program which prevents its use in
large scale scenarii. When it comes to solving the Wasserstein problem, two main approaches have been
investigated to overcome scalability issues: i) use a regularized version of the OT formulation that allows
speeding up the computations ii) slicing the problem and average low computational solutions to get
an approximation. The sliced-Wasserstein approximation [Bonneel 2015] computes a solution with a
complexity O(Ldn + Ln log(n)) (L being the number of the sampled directions) and is several order of
magnitude faster to compute. It leverages on two results: the closed-form of the Wasserstein distance
when the distribution is 1-dimensional and the transformation of a distribution using Radon transforms
into a set of projected 1D distributions. We build on this result to provide a fast approximation of GW.
The first result is about a closed-form for GW for 1D distributions, the second is a projection operator
that allows keeping the invariants (translation and rotation) of GW.

Recent results [Beinert 2022, Dumont 2022] show that eq. (7.4) is false and conterexamples exist.
In practice, numerical simulations suggest that it is “often” true though and that the derived sliced
Gromov-Wasserstein algorithm is efficient, that is why decided to present the closed-form for 1D GW in
this manuscript.

7.2.1 Closed-form for 1D GW

We have provided and proved a solution for an 1D Quadratic Assignment Problem (QAP) with a quasi-
linear time complexity of O(n log(n)). This new special case of the QAP is shown to be equivalent to the
hard assignment version of GW with squared Euclidean cost for distributions lying on the real line.

Let us suppose that q = 2, n = m and hi = gj = 1
n . We sort the points x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤

yn and consider square Euclidean distance matrices dX(xi,xj) = ‖xi−xj‖22 and dY (yi,yj) = ‖yi−yj‖22.
The result states that if one wants to find the best one-to-one correspondence of real numbers such that
their pairwise distances are best conserved,

GW 2
2 (CX ,CY ,h, g) = min

σ∈Sn

1
n2

∑
i,j

(
dX(xi,xj)− dY (yσ(i),yσ(j))

)2 (7.4)

where σ ∈ Sn is a one-to-one mapping {1, · · · , n} → {1, · · · , n}, the result is achieved by the identity
σ(i) = i or the anti-identity permutation σ(i) = n+ 1− i.

Note also that, while both possible solutions for problem (7.4) can be computed in O(n log(n)), finding
the best one requires the computation of the cost which seems, at first sight, to have a O(n2) complexity.
However, the cost can be computed in O(n) as one can develop the sum to compute it in O(n) operations
using binomial expansion so that the overall complexity of finding the best assignment and computing
the cost is O(n log(n)) which is the same complexity as the 1D Wasserstein distance.

7.2.2 Sliced Gromov-Wasserstein formulation

In order to define the sliced Gromov-Wasserstein distance, we have two problems to solve: i) how to
register the two sampled directions (we cannot keep the same direction when n 6= m for instance ii) how
recovering some Gromov-Wasserstein invariances? We propose some solutions hereafter.

The closed-form solution of GW for one-dimensional distributions is an attractive property that
gives rise to the sliced-GW distance, analogously to the sliced-Wasserstein distance. Let µX ∈ P(Rp)
and µY ∈ P(Rr), with p ≤ r be discrete measures with µX =

∑
i hiδxi and µY =

∑
j gjδyj . Let
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Sr−1 = {θ ∈ Rr : ‖θ‖2,r = 1} be the r-dimensional hypersphere and λr−1 the uniform measure on Sr−1

. For θ we note Pθ the projection on θ, i.e. Pθ(x) = 〈x, θ〉. For a linear map ∆ ∈ Rr×p we define the
Sliced Gromov-Wasserstein (SGW) (defined here on the measures) as follows:

SGW∆(µX , µY ) = Eθ∼λr−1 [GW (CX ,CY , Pθ#µX∆, Pθ#µY )] (7.5)

where µX∆ = ∆#µX ∈ P(Rr). The function ∆ acts as a mapping for a point in Rp of the measure
µX onto Rr. When p < r, one straightforward choice is ∆ = ∆pad the "uplifting" operator which pads
each point of the measure with zeros: ∆pad(x) = (x1, . . . , xp, 0, . . . , 0︸ ︷︷ ︸

r−p

). The procedure is illustrated in Fig

7.6. We also proposed to optimize SGW∆ with respect to ∆ in the Stiefel manifold [Absil 2009], leading
to the Rotation Invariant SGW (RISGW ).

y1

y2

y3

y4

x1x4

x2
x3

Pθ#µY

Pθ#(∆#µX)

for θ ∈ Sr−1
p

yθ1 yθ2 yθ3 yθ4

xθ1 xθ2x
θ
3 xθ4

Figure 7.6: Example in dimension p = 2 and q = 3 (left) that are projected on the line (right). The solution for
this projection is the anti-diagonal coupling.

Interestingly enough, SGW holds various properties of the GW distance: i) for all ∆, SGW∆ and
RISGW are translation invariant. RISGW is also rotational invariant when p = q ii) SGW and
RISGW are symmetric, satisfy the triangle inequality and SGW (µ, µ) = RISGW (µ, µ) = 0 iii) if
SGW (µX , µY ) = 0 then µX and µY are isomorphic for the distance induced by the `1 norm on Rp.

7.2.3 Runtimes comparison

We perform a comparison between runtimes of SGW , GW and its entropic counterpart in figure 7.7.
We calculate these distances between two 2D random measures of n ∈ {1e2, ..., 1e6} points. For SGW ,
the number of projections L is taken from {50, 200}. In this experiment, we compute SGW between 106

points in 1 second. Note that we recover exactly a quasi-linear slope, corresponding to the O(n log(n))
complexity for SGW .
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Figure 7.7: Runtimes comparison between SGW , GW , entropic-GW between two 2D random distributions with
varying number of points from 0 to 106 in log-log scale. The time includes the calculation of the pair-to-pair
distances.
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This chapter relates with our work on defining new algorithms for partial and unbalanced opti-
mal transport. Optimal transport requires the two distributions to have the same total probability
mass ‖h‖1 = ‖g‖1 and that all the mass has to be transported. This hypothesis may not be relevant
when data are corrupted by noise, outliers or are mislabeled. Unbalanced and partial optimal trans-
port deals with this specific problem by allowing some mass not to be transported. We proposed three
new algorithms to solve these problems: i) an extension of the exact OT algorithms to compute partial
(Gromov-)Wasserstein distances ii) a regularization path for solving the unbalanced OT problem for all
the regularization parameter values iii) multiplicative algorithms for solving the UOT problem. From an
applicative viewpoint, we also proposed to use optimal transport in the Positive-Unlabeled context, that
we also describe in this chapter. Those works have been published in [Chapel 2020] and [Chapel 2021].



68 Chapter 8. Algorithms for Partial and Unbalanced Optimal Transport

8.1 Exact partial Wasserstein and Gromov-Wasserstein distance

8.1.1 Partial Wasserstein as an extended Wasserstein problem

We propose here to directly solve the exact partial Wasserstein (partial-W) problem by adding dummy
or virtual points xn+1 and ym+1 (with any features) and extending the cost matrix as follows:

C̄ =
[
C ξ1m

ξ1>n 2ξ +A

]
(8.1)

in whichA > 0 and ξ is a fixed positive or nul scalar. When the mass of these dummy points is set such that
hn+1 = ‖g‖1− s and gm+1 = ‖h‖1− s, with s the amount of mass to be transported, computing partial-
W distance boils down to solving a unconstrained problem W q

q (h̄, ḡ) = minT̄∈Π(h̄,ḡ)
〈
C̄
q
, T̄
〉
F
, where

ḡ = [g, ‖h‖1− s] and h̄ = [h, ‖g‖1− s]. It then allows using standard solvers to compute the distance. It
can be shown that, when A > 0 and that ξ is a positive or nul scalar, one has W q

q (ḡ, h̄)− PW q
q (g,h) =

ξ(‖g‖1+‖h‖1−2s) and the optimum transport plan T ∗ of the partial Wasserstein problem is the optimum
transport plan T̄ ∗ of W q

q (ḡ, h̄) deprived from its last row and column.

8.1.2 Partial Gromov-Wasserstein

We are now interested in the partial extension of Gromov-Wasserstein. In the case of a quadratic cost,
p = 2, the partial-GW problem writes as

PGW 2
2 (g,h) = min

T∈Πu(g,h)

1
2

n∑
i,k=1

m∑
j,l=1

(
dX(xi,xk)− dY (yj ,yl)

)2
TijTkl, (8.2)

where Πu(g,h) is defined in equation (6.9). The loss function is non-convex and the couplings feasibil-
ity domain Πu(g,h) is convex and compact. One may expect to introduce virtual points in the GW
formulation in order to solve the partial-GW problem. Nevertheless, this strategy is no longer valid as
GW involves pairwise distances that do not allow the computations related to the dummy points to
be isolated. In the following, we rather build upon a Frank-Wolfe optimization scheme [Frank 1956].
Our proposed Frank-Wolfe iterations strongly rely on computing exact partial-W distances and as such,
achieve a sparse transport plan [Ferradans 2013].

Algorithm 2 Frank-Wolfe algorithm for partial-GW

1: Input: Cost matrices CX and CY , mass s, p = 2, initial guess T (0)

2: Build ḡ = [g, ‖h‖1 − s] and h̄ = [h, ‖g‖1 − s]
3: for k = 0, 1, 2, 3, . . . do
4: G(k) ← L(CX ,CY ) ◦ T (k) // Compute the gradient of eq. (8.2)
5: T̄

(k) ← arg minT∈Π(ḡ,h̄)
〈
Ḡ

(k)
,T
〉
F

// Compute partial-W, with Ḡ as in eq. (8.1)

6: Get T̃
(k)

from T̄
(k)

// Remove last row and column
7: E(k) ← T̃

(k)
− T (k)// Compute the gap

8: γ(k) ← arg minγ∈[0,1]
〈
L(CX ,CY )q ⊗ (T (k) + γE(k)), (T (k) + γE(k))

〉
// Line-search

9: T (k+1) ← (1− γ(k))T (k) + γ(k)T̃
(k)

// Update
10: end for
11: Return: T (k)
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Fig. 8.1 illustrates the interest of the approach when there exists a domain shift between the source
and target points.

Figure 8.1: (Left) Source (in black) and target (in blue) samples that have been collected under distinct environ-
ments. The source domain contains only positive points (o) whereas the target domain contains both positives
and negatives (+) (Middle left) Partial-W fails to assign correctly all the labels in such context, red symbols
indicating wrong assignments (Middle right) Partial-GW recovers the correct labels of the unlabeled samples,
with a consistent transportation plan (gray lines), even when the datasets do not live in the same state space
(Right).

8.1.3 Application: partial optimal transport for Positive-Unlabeled learning

We hereafter investigate the application of partial optimal transport for learning from Positive and
Unlabeled (PU) data. After introducing PU learning, we present how to formulate a PU learning problem
into a partial-OT one.

Overview of PU learning. Learning from PU data is a variant of classical binary classification
problem (the label taking two values: y = 1 or −1), in which the training data consist of only positive
points, and the test data is composed of unlabeled positives and negatives. Let Pos = {xi}nPi=1 be the
positive samples drawn according to the conditional distribution p(x|y = 1) and Unl = {xUi }

nU
i=1 the

unlabeled set sampled according to the marginal p(x) = πp(x|y = 1) + (1 − π)p(x|y = −1). The true
proportion of positives, called class prior, is π = p(y = 1) and p(x|y = −1) is the distribution of negative
samples which are all unlabeled. The goal is to learn a binary classifier solely using Pos and Unl. A
broad overview of existing PU learning approaches can be seen in [Bekker 2020].

PU learning formulation using partial optimal transport. We proposes to build on partial
optimal transport to perform PU learning. In a nutshell, we aim at transporting a mass s = π from
the unlabeled (source) dataset to the positive (target) one. As such, the transport matrix T should
be such that the unlabeled positive points are mapped to the positive samples (as they have similar
features or intra-domain distance matrices) while the negatives are discarded (in our context, they are
not transported at all).

Defining the optimal transport point-of-view of PU learning. More formally, the unlabeled
points Unl represent the source distribution X and the positive points Pos are the target dataset Y. We
set the total probability mass to be transported as the proportion of positives in the unlabeled set, that
is s = π. We look for an optimal transport plan that belongs to the following set of couplings, assuming
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n = nU , m = nP , gi = 1
n and hj = s

m :

ΠPU (g,h) = {T ∈ Rn×m+ | T1m = {g, 0}, T>1n ≤ h, 1>nT1m = s}, (8.3)

in which T1m = {g, 0} means that
∑m
j=1 Ti,j = gi exactly or 0, ∀i to avoid matching part of the mass of

an unlabeled negative with a positive. This set is not empty as long as s mod gi = 0. The problem that
we aim at solving is the following:

PUW q
q (g,h) = min

T∈ΠPU (g,h)

n∑
i=1

m∑
j=1

Cqi,jTi,j .

Though the positive samples Pos are assumed easy to label, their features may be corrupted with noise
or they may be mislabeled. Let assume 0 ≤ α ≤ 1− s, the noise level.

Solving the PU problem. To enforce the condition T1m = {g, 0}, we adopt a regularized point of
view of the partial OT problem as in [Courty 2016] and we solve the following problem:

T̄
∗ = arg min

T̄∈Π(ḡ,h̄)

n+1∑
i=1

m+1∑
j=1

C̄qi,j T̄i,j + ηΩ(T̄ ) (8.4)

where gi = 1−α
n , hj = s+α

m , η ≥ 0 is a regularization parameter and α is the percentage of Pos that
we assume to be noisy (that is to say we do not want to map them to a point of Unl). We choose
Ω(T̄ ) =

∑n
i=1
(
‖T̄ i(:m)‖2 + ‖T̄ i(m+1)‖2

)
where T̄ i(:m) is a vector that contains the entries of the ith row

of T̄ associated to the first m columns. This group-lasso regularization leads to a sparse transportation
map and enforces each of the Unl samples xi to be mapped to only the Pos samples or to the dummy
point ym+1. When partial-GW is involved, we use this regularized-OT in the step (i) of the Frank-Wolfe
algorithm.

We have established that solving problem (8.4) provides the solution to PU learning using partial-OT.
Assume that A > 0, ξ is a constant, there exists a large η > 0 such that: W ∗qq (p̄, q̄) − PUW q

q (p, q) =
ξ(1− s). where W ∗qq (p̄, q̄) =

∑n+1
i=1

∑m+1
j=1 C̄qi,j T̄

∗
i,j with T̄ solution of eq. (8.4).

Experiments on different PU scenarii. Following previous works [Kato 2019,Hsieh 2019], we assume
that the class prior π is known throughout the experiments; otherwise, it can be estimated from {xi}nPi=1
and {xUi }

nU
i=1 using off-the-shelf methods, e.g. [Zeiberg 2020,Christoffel 2017,Jain 2016].

SCAR scenario. Most PU learning methods commonly rely on the selected completely at random
(SCAR) assumption [Elkan 2008] which assumes that the labeled samples are drawn at random among the
positive distribution, independently of their attributes. Considering six datasets from the UCI repository,
we show that partial-W competes and sometimes outperforms state-of-the-art PU learning algorithms
such as [Du Plessis 2014, Kato 2019] in this context. We also show that Partial-GW has competitive
results, showing that relying on intra-domain matrices may allow discriminating the classes. It never-
theless under-performs relatively to partial-W, as the distance matrix C between Pos and Unl is more
informative than only relying on intra-domain matrices.

SAR scenario. The SCAR assumption is often violated in real-case scenarii and PU data are often
subject to selection biases, e.g. when part of the data may be easier to collect. The selected at random
(SAR) setting [Bekker 2020,Hsieh 2019,Kato 2019] assumes that the positives are labeled according to
a subset of features of the samples. When constructing a dataset whose probability of the points to be
labeled depends on their label, we show that partial-GW allows maintaining a good level of accuracy
while partial-W and classical PU methods have degraded performances.
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Heteregeneous domains and/or features scenario. We further validate the proposed method in a
domain adaptation context, in which the domains and/or the features may vary between the positive
and the unlabeled dataset, considering the four domains of the Caltech office dataset [Saenko 2010]
described by two types of features (SURF [Saenko 2010] and DECAF [Donahue 2014]). Again, we observe
that partial-W competes with state-of-the-art PU learning algorithms when the domains and the features
are the same; that partial-GW provides the best results when the domains differ, suggesting that it is
able to capture the domain shift. We also propose a more challenging scenario in which both domains
and features are different: in that case, only partial-GW is applicable and the performances we observe
suggest that it is able to efficiently leverage on the discriminative information conveyed by intra-domain
similarity matrices.

8.2 The regularization path of unbalanced optimal transport
After proposing an algorithm for solving partial (Gromov-)Wasserstein, we now focus on the unbalanced
OT (UOT) formulation (eq. (6.11)) of OT.

8.2.1 UOT cast as a weighted Lasso problem with positivity constraints

We first consider UOT with a quadratic divergence for penalizing the deviation from the true marginals.
We first rewrite the Unbalanced OT problem associated with a `2 divergence in a vectorized form.

Let t = vec(T ), c = vec(C) and y> = [h>, g>]. Problem (6.11) can be re-written as

min
t≥0

Fλ(t) def= 1
λ
c>t+ ‖Ht− y‖22 (8.5)

where the design matrixH = [H>r ,H>c ]> is the concatenation of the matricesHr andHc that compute
sums of the rows and columns of T , respectively (see eq. (6.15)). By noting that t ≥ 0 and c ≥ 0,
the linear term can be expressed as 1

λc
>t = 1

λ

∑
i citi = 1

λ

∑
i ci|ti|. This corresponds to a weighted

`1 regularization, promoting sparsity in t and hence in the transport plans. Note that the “sparse”
regularization is here controlled by 1

λ (instead of λ in classical penalized linear regression), meaning
that the sparsity promoting term will be more aggressive for small λ. That analogy being pointed
out, we leverage results about non-negative Lasso to design an efficient algorithm to compute the first
regularization path of `2-penalized UOT, computing the whole set of solutions for a varying λ ranging
from 0 to +∞.

8.2.2 Regularization path of UOT

As for the Lasso, the path is piecewise linear in 1/λ between changes in the active set A = supp(tλ),
where tλ = vec(T λ) and T λ is the OT plan for given hyperparameter λ. The main steps of the algorithm
are roughly as follows: given a current solution (λk,T λk) and a current active set Ak, we look for the
next value λk+1 > λk such that the active set changes (i.e., Ak+1 6= Ak), either because one component
enters the active set or because one leaves it. Thanks to the piecewise linearity of the path, we can also
compute all the solutions for any λ ∈ [λk, λk+1].

Piecewise linearity of the path Assume that, at iteration k, we know the current active set A = Ak
and we look for tλA (the other values of tA being 0). Let HA, mA and cA denote the corresponding sub-
matrix and vectors. We showed that the optimal tλA (and hence tλ) can be solved for any λ ∈ [λk, λk+1],
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i.e., when the active set A remains the same, by solving a linear problem

tλA = m̃A −
1
λ
c̃A (8.6)

with m̃A = (H>AHA)−1mA, mA being the appropriate rows of m = H>y = vec(a1>m + 1nb
>), and

c̃A = (H>AHA)−1cA. Eq. (8.6) reveals the piecewise linearity in λ−1 of the path when A is fixed. As
expected, balanced OT is recovered when λ → ∞. Eq. (8.6) involves the computation of the matrix
(H>AHA)−1, whose computational burden can be alleviated by using the Schur complement as only one
index leaves or enters the active set at each iteration.

Finding (λk+1,Ak+1) given (λk,Ak). Given a current solution (λk, tλk), we look for the next λk+1

such that we observe a change in the set of active components. This happens whenever the first of the
following two situations occurs.

• One component in A becomes inactive. In that case, we remove the index i ∈ A with the smallest
λr > λk that violates the constraint which is given by

λr = min
>λk

(
c̃A
m̃A

)
(8.7)

where min
>λk

indicates the minimum value in the vector greater than λk and the division is entrywise.

• One component in Ā becomes active. We remove the index i ∈ A with the smallest λa > λk that
violates the positivity constraint:

λa = min
>λk

(
cĀ −

[
H>Hc̃

]
Ā

mĀ −
[
H>Hm̃

]
Ā

)
, (8.8)

where m̃ (resp. c̃) equals m̃A (resp. c̃A) on A and zero on Ā.

In practice, at each step of the path, we set λk+1 = min{λr, λa} and update the active set accordingly.

8.2.3 Numerical illustration

We first illustrate the regularization path for `2-penalized UOT on a simple example between two dis-
tributions containing 3 points each, with different masses and a cost matrix C given in figure 8.2 (left).
We can see in figure 8.2 (right) that, starting from λ0 = 0 and T = 0, we successively add or remove
components in the active set A when increasing the λ values. When λ = ∞, we recover the balanced
OT solution. Recall that the path is linear in 1/λ (and not λ). We then illustrate the path for both
`2-penalized UOT and semi-relaxed UOT on two 2D distributions with n = m = 100 samples. We can
see in figure 8.3 the difference between the two regularization paths for specific values of λ. UOT starts
with an empty plan for λ = 0 and then activates samples from both source and target from the closest
to the farthest ones until convergence to the balanced OT plan. Semi-relaxed UOT starts with all target
samples active due to marginal constraints and progressively activates the source samples.
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8.3 Multiplicative algorithms for unbalanced optimal transport

8.3.1 UOT cast as a regression problem with a Bregman divergence

More generally than eq. (8.5), we can use a Bregman divergence to quantify how two distributions differ.
The UOT problem then writes as:

min
t≥0

Fλ(t) def= 1
λ
c>t+Dϕ(Ht,y) (8.9)

in which Dϕ is the Bregman divergence generated by the strictly convex and differentiable function ϕ.
Problems of the form of eq. (8.9) are well-known in inverse problems and non negative matrix fac-

torization (NMF). In contrast to problem (8.9), the data fitting term is more commonly Dϕ(y,Ht)
instead of Dϕ(Ht,y) in those communities. This is because the former is a log-likelihood in disguise
for the mean-parametrized exponential family, and takes important noise models as special cases, such
as Poisson, additive Gaussian or multiplicative Gamma noise [Févotte 2011]. This analogy allows bring-
ing into optimal transport multiplicative algorithms commonly used in the NMF and inverse problem
communities.

8.3.2 Majorization-Minimization (MM) for UOT

General MM framework In a nutshell, MM consists in iteratively building and minimizing an upper
bound of the objective function which is tight at the current parameter estimate (and referred to as
auxiliary function), see [Hunter 2004, Sun 2017] for tutorials. In NMF, a common approach consists in
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alternating the updates of the dictionary H and of the embeddings. In our case, H is fixed and we may
use the results of [Dhillon 2005] to build an auxiliary function for term Dϕ(Ht,y), to which we may
simply add the linear term c>t/λ to obtain a valid auxiliary function for Fλ(t). Let t̃ denote the current
estimate of t, Z̃i,j = Hi,j t̃j∑

l
Hi,l t̃l

and

Gλ(t, t̃) =
∑
i,j

Z̃i,jϕ

(
Hi,jtj

Z̃i,j

)
+
∑
j

[
cj
λ
−
∑
i

Hi,jϕ
′(yi)

]
tj + cst, (8.10)

where cst =
∑
i[ϕ′(yi)yi − ϕ(yi)]. Then, Gλ(t, t̃) is an auxiliary function for Fλ(t), i.e., ∀t, Gλ(t, t̃) ≥

Fλ(t) and Gλ(t̃, t̃) = Fλ(t̃). Let p(k+1) = argmint≥0Gλ(t, t(k)), then Fλ(t(k)) = Gλ(t(k), t(k)) ≥
Gλ(t(k+1), t(k)) ≥ Fλ(t(k+1)), producing a descent algorithm over F . The trick to obtain G is to ap-
ply Jensen inequality to ϕ(

∑
j Hi,jtj) = ϕ(

∑
j Z̃i,j

Hi,j
Z̃i,j

tj) ≤
∑
j Z̃i,jϕ(Hi,j

Z̃i,j
tj), thanks to the convexity of

ϕ, see details in [Dhillon 2005]. We provide below the resulting algorithms for the KL and `2 penalizations.

MM for KL-penalized UOT. The KL divergence is obtained with ϕ(y) = y log y − y. Minimizing
Gλ(t, t(k)) in that case leads to following multiplicative update:

t
(k+1)
j = t

(k)
j exp

(
[H> log(y)−H> log

(
Ht(k))]j − 1

λcj

[H>1]j

)
. (8.11)

Owing to the structure of p and H, the update can be re-written in the following matrix form:

T (k+1) = diag
(

a

T (k)
1m

) 1
2
(
T (k) � exp

(
−C2λ

))
diag

(
b

T (k)>
1n

) 1
2

, (8.12)

where � is entrywise multiplication and divisions are taken entrywise as well. The multiplicative update
in eq. (8.12) is remarkably similar to the Sinkhorn-Knopp algorithm. But instead of two separate steps
for the left and right scaling, Eq. (8.12) applies these scalings simultaneously in a unique update using
the diagonal matrices (and a form of geometrical average). Factor exp

(
− C2λ

)
penalizes along iterations

the coefficients of the transport plan with large costs.

MM for `2-penalized UOT. The quadratic loss is obtained with ϕ(y) = y2

2 . In that case, minimizing
Gλ(t, t(k)) leads to following multiplicative update:

T (k+1) = T (k) �
max

(
0,a1>m + 1nb

> − 1
λC
)

T (k)Om + OnT
(k) with O` = 1`1

>
` . (8.13)

8.3.3 Study of the performances of the algorithms

We provide an empirical evaluation of the running times of the proposed algorithms, using 2 sets of
10-dimensional points with n = m = 500 and drawn according to i.i.d. Gaussian distributions. The cost
matrix C is computed using a squared `2 norm. We compare the running times of the current state-
of-the-art BFGS algorithm [Blondel 2018] using SciPy [Virtanen 2020] and those of the `2-penalized
UOT formulated as a Lasso problem (with both the Celer algorithm [Massias 2018] and the coordinate
descent solvers from Scikit-learn [Pedregosa 2011]), the multiplicative algorithm for both the `2 and the
KL penalties and the regularization path algorithm. Figure 8.4 shows the average running time for all
algorithms. For `2-penalized UOT, we observe that, for large λ values, the Lasso solvers are the fastest
and that, whatever the value λ, BFGS is the slowest. As for KL-penalized UOT, the BFGS algorithm
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Figure 8.4: (Left) comparison of `2-penalized UOT with other algorithms (right) likewise for KL-penalized UOT.
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is more efficient when large values of λ are considered. One can also notice that, similarly to Sinkhorn
which is fast for large regularization values, the multiplicative algorithms for both penalties are also fast
for high 1/λ values.





Chapter 9

Concluding remarks and perspectives

In this last chapter, I provide some concluding remarks about my work but also give some perspectives
that I plan to investigate or that I think are of prime importance.

In the field of optimal transport for machine learning, we have provided new algorithms for solving
unbalanced optimal transport but I believe that there is still much to investigate in this context. Indeed,
it is a much more realistic context for machine learning as it allows removing the noise or outliers that
are very often present in the data. I see two main lines of work: i) build solutions that detect out-of-
distribution samples, without the need to tune a parameter; ii) define more scalable solutions for UOT.
With such tools at hand, one expects OT to reach better performances in machine learning applications,
notably when applied to structured data.

Regarding time series, we have provided solutions that rely on well-established tools in the community,
such as kernels and bag of words. I believe that a fruitful cross-fertilization between DTW and OT is
worth being investigating as they share a lot of common features. Also, the topic of temporal transfer
learning is still under-studied in the ML time series community despite being a natural framework for
evolving data. Again, among other possible options, OT tools could be a natural playground in this
context.

Finally, the highly structured features of remote sensing images drove me to the study of graphs as
objects of interest, and led my more recent works in the field of optimal transport. The journey took
some time, and from an application point of view, it is now time to go back and check if those methods
are actually relevant for the RS community. In the meantime, hyperbolic geometry has been shown to be
an efficient framework for representing tree-structured data. In a more methodological point of view, it is
worth checking if this framework fits within the RS context and to develop more integrated frameworks
that explicitely takes into account the structure within the learning process. In a more prospective line,
transferring knowledge from different modalities is, to my viewpoint, one of the most interesting challenge
to tackle in the community.

I now give some more details about those perspectives.

9.1 Perspectives for unbalanced optimal transport and machine
learning

9.1.1 Detecting outliers or out-of-distribution samples

Optimal transport suffers from its brittleness with respect to outliers or corrupted samples, that often
puts its relevance in jeopardy: just one corrupted value in the cost matrix can render the transport
matrix and the OT distance arbitrary far away the true value. Recently, robust versions of optimal
transport have been developped [Mukherjee 2021,Balaji 2020] with the aim to produce a transport plan,
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a distance or a parametric distribution (when looking at minimum Kantorovitch estimators for instance)
that do not take into account outliers or out-of-distribution samples. They often rely on unbalanced
or partial optimal transport formulations; nevertheless, the problem of the choice of the best parameter
remains. This problem is sometimes even crucial when its value should change over the iterations of
the algorithm, e.g. when dealing with minibatches [Fatras 2021]. Some works choose the regularization
parameter by cross-validation, but it then requires a supervised formulation of the problem. This leads to
the following question: how to choose (in an unsupervised manner) the best regularization parameter? On
the other hand, OT-based statistics are becoming more and more popular in statistics either for inference
or testing purposes. For instance, [Del Barrio 2019] define a notion of variability of the Wasserstein
distance, allowing them to reject the hypothesis of the similarity of two distributions when the minimal
alignment cost exceeds some threshold. I believe that the regularization path algorithm that we provide
in [Chapel 2021] can provide a tool to solve the problem, by introducing a comparison with an expected
distribution of the OT distance under the hypothesis that the distributions are the same over two values
of the path. This first implies to study in futher details the properties of the path of the UOT, e.g.
does the monotonicity of the support of the marginals holds in the formulation, as it does for partial
OT [Caffarelli 2010]? One other option would be to add an additional regularization parameter that
introduces an additional term that penalizes the difference between two distributions (in the same vein
as [Brécheteau 2019] for the Gromov-Wasserstein distance). In an other direction, the sliced-Wasserstein
distance is based on averaging different ordering of the data (when projected on the line). It would be
interesting to investigate if those projections could allow defining multivariate statistics such as quantiles
or ranks (in the same vein as [Hallin 2021]) for statistical inference.

9.1.2 Defining scalable algorithms for unbalanced or partial optimal transport

Optimal transport also suffers from computational limitations that hinder its use for massive dataset.
Despite the introduction of the Sinkhorn regularization, that is nearly O(n2), and the definition of
stochastic procedures, the resolution of the problem is still slow for small regularization terms. The sliced-
Wasserstein approximation has alleviated the computational burden and also improved the statistical
properties in high dimensions, with a complexity of O(n log(n)), and a convergence rate of

√
n instead

of O(n−1/d) for the Wasserstein distance [Nadjahi 2019]. When it comes to unbalanced and partial
optimal transport, such computational tools are still lacking, together with a analysis of their theoretical
properties.

Building on 1d OT. Solving 1-dimensional optimal transport is straighforward as it suffices to sort the
input samples. When it comes to exact 1d unbalanced or partial optimal transport, very few methods
have been developped. One can cite [Bonneel 2019] that propose a solver for a simplified partial OT
problem in O(nm), in which the set of admissible transport plans is restricted to injections between
the two distributions. The very recent work of [Sejourne 2021] build on iterations of a Frank-Wolfe
algorithm, which leads to a O(n + m) iteration approximate algorithm. Then, the questions that arise
are the following: can we do better? How deriving a provable sliced-UOT algorithm, with a coherent
regularization parameter among the projections? Can we derive an efficient regularization path in case
of 1d-UOT? When it comes to structured data and the use of Gromov-Wasserstein, we have defined
the 1d solution in [Vayer 2019b]. It would be of high interest to see its extension to 1d-unbalanced
Gromov-Wasserstein.
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Building on regularization paths. In order to speed up the computations, one other option is to
define approximate solutions of the OT problem. The Sinkhorn algorithm is a flagship example of this
strategy, but other schemes could be defined. When it comes to regularization path, the approach
of [Mairal 2012] can compute a regularization path with precision ε in O(1/ε) iterations. This would
lead to a full complexity of O(nm/ε) that is even interesting to approximate balanced OT. Albeit non
convex, would it be possible to obtain a regularization path of GW? Indeed, the formulation of the `2
regularized UOT problem contains a quadratic term (corresponding to the deviation of the marginals)
plus a weighted `1 regularization term (the OT term). One could then derive an alternative formulation,
in which the quadratic term would correspond to the GW objective, and the `1 term to the penalization
of the marginals. Obviously, one would not ensure the optimality of the solution but the convergence
towards a fixed point may be obtained. In that case, it would allow lowering the computational cost of
unbalanced GW computation.

9.1.3 Alternative formulations of the unbalanced optimal transport problem

Unbalanced or partial optimal transport relies on the fact that we autorize deviation from the true
marginals. Other viewpoints could be considered in order to define alternative formulations. A crucial
question in OT is the choice of the ground metric [Cuturi 2014a]: the `1 or `2 norm are often chosen but
they can be poor choice in practice for high dimensional data, when samples live on a manifold or when
they are structured. Several works have considered the optimization of OT that maximizes the ground
cost [Niles-Weed 2019,Paty 2019] and the link between regularizing and maximizing optimal transport has
been formalized in [Paty 2020]. Learning the ground metric would allow selecting an optimal transport
distance w.r.t. the problem at hand. For classification of structured data, one could learn a data-
dependant ground cost that reflects the class-similarities between the samples; for unbalanced optimal
transport, one could set the ground cost to 0 (or small values) to samples that are out of the distribution
in order to have a more meaningful OT distance. An alternative formulation would be to learn the
weights of the samples / learn the probability measures. In machine learning applications, they are often
set to 1/n. It would be interesting to learn a barycentric or a quasi semi-discrete representation of the
dataset, in which regions of high density would be represented by samples with high weights and outliers
would have low or null weights. One could also add slack variables in order to lower the importance of
outliers.

9.2 Perspectives for Machine Learning on Time Series

9.2.1 Temporal transfer learning

When time series are at stake, new difficulties arise when transfering knowledge from one domain to
another as temporal shifts can be encountered in addition to the standard feature distribution shift. It is
nevertheless a task of crucial importance when dealing with time series as, by definition, the phenomenom
may evolve with time, and that the underlying process that have been observed at some time may differ
from another one that is observed at another time. While being able to match distributions is proved to
be an efficient approach for transfer learning, existing methods mainly rely on domain adversarial neural
network approaches, with tuning and parameter setting issues. One could couple optimal transport
and DTW in a single formulation, in which the temporal distortion could vary w.r.t. the inputs or
the labels for instance. In addition, beyond the classification task that have been considered, other
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applications still lack some solutions, such that missing data imputation, clustering or even classification
of temporal structured data (such as graphs or hierarchical representation of images) under domain shift.
This problematic also encompasses the concept of early classification: while classification of time series
is usually performed when the whole time series is observed, early classification deals with data stream.
The aim is then to make predictions as early as possible (should I wait for other observations or can I
make the prediction right now?). It is then a multi-objective optimization problem as a trade-off between
earliness and accuracy should be performed. This idea is somehow concomitant to the task of time series
prediction: if one is able to accurately predict (long-term) time series, one could also predict the class of
the time series. The early classification task should be enriched by the significant advances in time series
prediction.

9.2.2 Exploring the link between Dynamic Time Warping and Optimal Transport

DTW and OT share a lot of common features in their formulation: both are a linear programs under
some constraints but the constraint set of the coupling (or alignment) matrix differ. One may wonder
how developments that have been made about DTW can enrich OT and vice-versa. First, DTW can
be efficiently solved relying on a dynamic programming algorithm, that may inspire efficient unbalanced
OT-1d solutions as the order has to be maintained. On the other side, OT has many extensions that
could be beneficial to DTW: how to define a unbalanced DTW algorithm, that would be able to get rid of
outliers or take into account missing points? How defining a multi-marginal DTW, that would robustify
the DTW measure when several time series are at stake? When dealing in a domain adaptation scenario,
and despite their widespread use, DTW distances are limited to find a temporal alignment between two
time series, but are not adapted to find an alignment between two sets of series. On the other hand,
optimal transport is well suited to match different elements in sets, but fails to handle sets of time series
that might not share the same common sampling, and is not robust to temporal shared common shifts
between the time series. It would be interesting to combine best of both worlds by defining a metric
that would map time series from distinct datasets under a global temporal shift by jointly optimizing an
optimal transport map (matching series to series) and a dynamic time warping transformation (aligning
timestamps).

9.3 Perspectives for Machine Learning for Remote Sensing images

9.3.1 Fully exploiting the geometry of hierarchical data with hyperbolic spaces

In most machine learning applications, the learning is performed on a Euclidean space, mostly because
it has convenient mathematical properties, such as vectorial structures or closed forms for computing
distances. Nevertheless, in many domains, real-world data do not possess a Euclidean structure but
can rather be represented with a hierarchical structure and, in that case, they cannot be embedded in
a Euclidean space with low distortion [Sala 2018]. In the opposite, hyperbolic spaces [Nickel 2017] are
manifolds that have been shown to represent efficiently hierarchical data in many applications. With
the Manal Hamzaoui’s1 PhD thesis, we aim to investigate whether the promises given by hyperbolic
spaces can be fulfilled in a remote sensing data context, in particular on the hierarchically-labeled scene
classification context. We first considered a hyperbolic variational auto-encoder for remote sensing scene
classification [Hamzaoui 2021]: first experimental results show that the embedding in a hyperbolic space

1under progress
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does not improve the global classification accuracy when compared with a Euclidean space, but allows
slightly improving the deviation among the misclassified examples when taking into account the distance
between the predicted and the actual label in the label hierarchy. We now are investigating the benefit
of such spaces when considering a classification of scene images when the labels are organized on a
tree, using a hierarchical loss. Up to now, those loss functions are derived from Euclidean ones and the
geometry of the space is not fully exploited. One remains to define dedicated tools for optimizing on that
geometry, with important promises in terms of accuracy improvements. For example, building on the
Gromov-hyperbolicity property of those spaces, Gromov-Wasserstein metric is a particularly attractive
tool that should allow a better organization of the latent space. In an other line of research, coupling
these geometries in few or zero shot learning would perfectly fit the current remote sensing challenges, in
which labels are often scarse and sometimes even unseen at the training stage.

9.3.2 Multimodality and transfer learning for Remote Sensing images

Beyond the exceptional data volume to be handled in remote sensing, modern remote sensing missions
(aerial and satellite) has raised up new challenges for the remote sensing communities. These sensors are
now able to offer (very) high spatial resolution images with revisit time frequencies never achieved before,
considering different kind of signals, e.g., multi(hyper)-spectral optical, radar, LiDAR and digital surface
models. In this context, pattern recognition and artificial intelligence techniques play a crucial role to deal
with such an impressive amount of multi-source, multi-resolution and multi-temporal data. Nevertheless,
labeled data are still scarse as they are costly to obtain, necessitate expertise and may not be available
for all the modalities. The question of heterogeneous domain adaptation, that is to say when the domains
are described by different features, is then of prime importance for the remote sensing community. Very
few has been done in this direction, both in term of computational solutions and on theoretical analysis;
beyond the remote sensing community, being able to transfer knowledge between different domains and
across different architectures is one of the current main challenges in machine learning. My interest on
optimal transport came from the idea that it can be an adequate tool for solving this problem; one of my
works in the near future is to check this assumption on a remote sensing context.
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